-
简介:4.8图形的位似图形的位似第第1课时课时位似多边形及其性质位似多边形及其性质1.了解位似多边形及其有关概念,了解位似与相似的联系和区别;(重点)2.掌握位似图形的性质,会画位似图形;(重点)3.会利用位似将一个图形放大或缩小.(难点)一、情景导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察下图,图中有相似的多边形吗如
-
简介:6.1反比例函数反比例函数1.领会反比例函数的意义,理解并掌握反比例函数的概念;(重点)2.会判断一个函数是否是反比例函数;(重点)3.会求反比例函数的表达式.(难点)一、情景导入你吃过拉面吗有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢二、合作探究探究点一反比
-
简介:5.1投影投影第第1课时课时投影的概念与中心投影投影的概念与中心投影1.了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用;(重点)2.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.(难点)一、情景导入皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一
-
简介:4.5相似三角形判定定理的证明相似三角形判定定理的证明1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)一、情景导入相似三角形的判定方法有哪些答(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似.怎样证明这些结论呢二、合作探究探究点相似三角形的判定定理
-
简介:4.7相似三角形的性质相似三角形的性质第第1课时课时相似三角形中的对应线段之比相似三角形中的对应线段之比1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系;(重点)2.能熟练运用相似三角形的性质解决实际问题.(难点)一、情景导入在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角
-
简介:4.1成比例线段成比例线段第第1课时课时线段的比和成比例线段线段的比和成比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情景导入请观察下列几幅图片,你能发现些什么你能对观察到的图片特点进行归纳吗这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段
-
简介:4.3相似多边形相似多边形1.了解相似多边形和相似比的概念;2.会根据条件判断两个多边形是否为相似多边形;(重点)3.掌握相似多边形的性质,能根据相似比进行相关的计算.(难点)一、情景导入观察以下三组图形,每一组图形的对应边、对应角有什么关系呢二、合作探究探究点一相似多边形的判定下列图形都相似吗为什么(1)所有正方形;(2)所有矩形;(3)所有菱形
-
简介:4.2平行线分线段成比例平行线分线段成比例1.了解平行线分线段成比例的基本事实及其推论;(重点)2.会用平行线分线段成比例及其推论解决相关问题.(难点)一、情景导入梯子是我们生活中常见的工具.如图是一个生产过程中不合格的左右不对称的梯子的简图,经测量,ABBCCD,AA1BB1CC1DD1,那么A1B1和B1C1相等吗二、合作探究探究点一平行线分线段成比例如图
-
简介:4.6利用相似三角形测高利用相似三角形测高1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验;(重点)2.灵活运用三角形相似的知识解决实际问题.(难点)一、情景导入胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度.你能根据图示说出他测量金字塔的原理吗二、合作
-
简介:3.2用频率估计概率用频率估计概率1.知道通过大量的重复试验,可以用频率来估计概率;(重点)2.了解替代模拟试验的可行性.一、情景导入我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表实验者抛掷次数n“正面朝上”次数m频率m/n隶莫弗布丰皮尔逊皮尔逊2048404012000240