-
简介:31.2两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式二二学习目标1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能灵活应用知识点一两角和与差的正切公式名称简记符号公式使用条件两角和的正切Ttantantan1tantan
-
简介:3.1两角和与差的正弦、余弦和正切公式两角和与差的正弦、余弦和正切公式31.1两角差的余弦公式两角差的余弦公式学习目标1.了解两角差的余弦公式的推导过程.2.理解用向量法导出公式的主要步骤.3.熟记两角差的余弦公式的形式及符号特征,并能利用该公式进行求值、计算知识点两角差的余弦公式Ccoscoscossinsin.1适用条件公式中的角,都是任意角
-
简介:24.2平面向量数量积的坐标表示平面向量数量积的坐标表示、模模、夹角夹角学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示设非零向量ax1,y1,bx2,y2,a与b的夹角
-
简介:2.4平面向量的数量积平面向量的数量积24.1平面向量数量积的物理背景及其含义平面向量数量积的物理背景及其含义学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式知识点一平面向量数量积
-
简介:23.4平面向量共线的坐标表示平面向量共线的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点平面向量共线的坐标表示1设ax1,y1,bx2,y2,其中b0,a,b共线,当且仅当存在实数,使ab.2如果用坐标表示,可写为x1,y1x2,y2,当且仅当x1y2x2y10时
-
简介:2.5平面向量应用举例平面向量应用举例25.1平面几何中的向量方法平面几何中的向量方法学习目标1.学习用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程.2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力知识点一几何性质及几何与向量的关系设ax1,y1,bx2,y2,a,b的夹角为.用向量解决常见平面几何问题的技巧
-
简介:25.2向量在物理中的应用举例向量在物理中的应用举例学习目标1.经历用向量方法解决某些简单的力学问题与其他一些实际问题的过程.2.体会向量是一种处理物理问题的重要工具.3.培养运用向量知识解决物理问题的能力知识点一向量的线性运算在物理中的应用1用向量解决力的问题,通常把向量的起点平移到同一个作用点上2向量在解决涉及速度、位移等物理量的合成与分解时,实质就是向量的线性运算知识点二
-
简介:22.3向量数乘运算及其几何意义向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题知识点一向量数乘的定义实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,其长度与方向规定如下
-
简介:23.2平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示23.3平面向量的坐标运算平面向量的坐标运算学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来知识点一平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解知识点二平面向量的坐标表
-
简介:22.2向量减法运算及其几何意义向量减法运算及其几何意义学习目标1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算知识点一相反向量1定义与a长度相等,方向相反的向量,叫做a的相反向量,记作a.2性质1对于相反向量有aaaa0.2若a,b互为相反向量,则ab,ba,ab0.3零向