1、模拟试卷(一),一、选择题(本大题共12小题,每小题5分,共60分) 1.设集合Ax|1x2,Bx|2x1,则AB等于 A. 0,2) B.0,1) C.(1,0 D.(1,0),解析 由题意得Bx|2x1x|x0,又Ax|1x2, ABx|0x20,2).故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,故选B.,3.下列函数中,既是偶函数,又在(,0)上单调递增的是 A.f(x)2x2x B.f(x)x2
2、1 C.f(x)xcos x D.f(x)ln|x|,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 A中,f(x)2x2xf(x),不是偶函数,A错; B中,f(x)(x)21x21f(x),是偶函数,但在(,0)上单调递减,B错; C中,f(x)xcos(x)xcos xf(x),不是偶函数,C错; D中,f(x)ln|x|ln|x|f(x),是偶函数,且函数在(,0)上单调递增,故选D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,4.设等比数列a
3、n的前n项和为Sn,且Snk2n3,则ak等于 A.4 B.8 C.12 D.16,解析 当n2时,anSnSn1k2n1; 当n1时,a1S12k3k211,解得k3, aka3323112. 故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12
4、,13,14,15,16,17,18,19,20,21,22,结合各选项可得C符合题意. 故选C.,7.函数f(x) 有两个不同的零点,则实数a的取值范围是 A.a2 B.a2,故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,8.(2019安徽省江淮名校试题)RtABC的斜边AB等于4,点P在以C为圆心,1为半径的圆上,则 的取值范围是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
5、,16,17,18,19,20,21,22,9. (1x)5的展开式中x2的系数为 A.1 B.9 C.31 D.19,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,10.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆.过B作BDAC,与半圆相交于D. AC6,BD ,在整个图形中随机取一点,则此点取自图中阴影部分的概率是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17
6、,18,19,20,21,22,解析 连接AD,CD, 可知ACD是直角三角形,又BDAC,所以BD2ABBC,设ABx(0x6),则有8x(6x),得x2或x4,当x2时,AB2,BC4, 由此可得图中阴影部分的面积等于,故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 由题意,矩形的对角线长相等,,4a2b2(b23a2)c2, 4a2(c2a2)(c24a2)c2, e48e240,,故选C.,1
7、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,12.设正三棱锥PABC的每个顶点都在半径为2的球O的球面上,则三棱锥PABC体积的最大值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,故选C.,二、填空题(本大题共4小题,每小题5分,共
8、20分),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,13.已知向量a,b的夹角为45,且|a|b|2,则a(a b)_.,0,14.若函数f(x)(a1)x3ax22x为奇函数,则曲线yf(x)在点(1,f(1)处的切线方程为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 f(x)(a1)x3ax22x为奇函数,则a0, f(x)x32x, f(x)3x22,f(1)31221,又f(1)1, 曲线yf(x)在点(1,f(1)处的切线方程为y1x1,即xy2
9、0.,21,22,xy20,15.(2019安徽省江淮名校联考)已知正数a,b满足ab1,则 的最大值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 令xa1,yb2,则xy4,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16.设mR,若函数f(x)|x33xm|在x0, 上的最大值与最小值之差为2,则实数m的取值范围是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(,2
10、0,),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,则g(x)3x233(x1)(x1),,2m0或m0, 解得m2或m0. 实数m的取值范围为(,20,).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,三、解答题(本大题共70分) 17.(10分)设Sn为等差数列an的前n项和,S981,a2a38. (1)求an的通项公式;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,故an1(n1
11、)22n1(nN*).,(2)若S3,a14,Sm成等比数列,求S2m.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,即9m2272,解得m9,故S2m182324.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 在ABC中,根据正弦定理,,又ADCBBADB6060, 所以ADC120. 于是C1801203030,所以B60.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(2)若B
12、D2DC,且AD ,求DC的长.,在ABD中,由余弦定理,得 AD2AB2BD22ABBDcos B,,故DC2.,19.(12分)如图,四边形ABCD为正方形,BEDF,且ABBEDF EC,AB平面BCE. (1)证明:平面AEC平面BDFE;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,证明 四边形ABCD为正方形,ACBD.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,又AB平面BCE,ABBE. ABBCC,BE平面ABCD,BEAC. 又BEB
13、DB,AC平面BDFE, AC平面AEC,平面AEC平面BDEF.,(2)求二面角AFCD的余弦值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 BE平面ABCD,BEDF,DF平面ABCD. 以D为坐标原点建立如图所示的空间直角坐标系Dxyz,令AB1, 则A(1,0,0),C(0,1,0),E(1,1,1),F(0,0,1),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,设平面AFC的法向量为n1(x1,y1,z1),,令x11,则n1(1,1,1
14、). 易知平面FCD的一个法向量n2(1,0,0),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,二面角AFCD为锐角,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.(12分)某中学为了解中学生的课外阅读时间,决定在该中学的1 200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅
15、读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表: (1)求出表中x,y的值;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 设抽取的20人中,男、女生人数分别为n1,n2,,21,22,所以x12534,y8332.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加阅读与否”与性别有关;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1
16、6,17,18,19,解 列联表如下:,21,22,所以没有90%的把握认为“参加阅读与否”与性别有关.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的均值.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 X的可能取值为0,1,2,3,,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21.(1
17、2分)在直角坐标系xOy中,直线yx4与抛物线C:x22py(p0)交于A,B两点,且OAOB. (1)求C的方程;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,得x22px8p0,4p232p0, 设A(x1,y1),B(x2,y2),则x1x22p,x1x28p, 从而y1y2(x14)(x24)x1x24(x1x2)16.,2x1x24(x1x2)160, 即16p8p160,解得p2,故C的方程为x24y.,(2)试问:在x轴的正半轴上是否存在一点D,使得ABD的外心在C上?若存在,求出D的坐标;若不存在
18、,请说明理由.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,解 设线段AB的中点为N(x0,y0),,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,则线段AB的中垂线方程为y6(x2), 即yx8.,从而ABD的外心P的坐标为(4,4)或(8,16). 假设存在点D(m,0)(m0),设P的坐标为(4,4),,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,若P的坐标为(8,16),,20,1
19、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,则P的坐标不可能为(8,16).,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22.(12分)(2019安徽省江淮名校联考)已知函数f(x)exax2在x1处的切线方程为ybx1. (1)求a,b的值;,21,22,解 f(x)ex2ax,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)证明:当x0时ex2xx2ex1.,21,22,20,1,2,3,4,5,6,7,8,
20、9,10,11,12,13,14,15,16,17,18,19,证明 实际上是证明当x0时,f(x)exx2的图象在直线y(e2)x1的上方. 令g(x)exx2(e2)x1,x0,则g(x)ex2xe2, 令t(x)ex2xe2,则t(x)ex2, 所以g(x)在(0,ln 2)上单调递减,在(ln 2,)上单调递增;g(x)在xln 2处取唯一的极小值. 注意到g(0)3e0,g(1)0,而0ln 21, 所以g(ln 2)0,所以g(0)g(ln 2)0; 又因为g(x)在(0,ln 2)上单调递减, 所以存在唯一的x0(0,ln 2),使g(x0)0;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,因此当x(0,x0)或x(1,)时,g(x)0, 当x(x0,1)时,g(x)0时,不等式ex2xx2ex1成立.,21,22,