1、阶段强化练(七),第九章 平面解析几何,一、选择题 1.(2019成都诊断)已知椭圆C:16x24y21,则下列结论正确的是,解析 由椭圆方程16x24y21化为标准方程可得,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,3.(2019河北衡水中学调研)已知双曲线my2x21(mR)与抛物线x28y有相同的焦点,则该双曲线的渐近线方程为,解析 抛物线x28y的焦点为(0,2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
2、18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,5.(2019洛阳、许昌质检)若双曲线x2 1(b0)的一条渐近线与圆x2(y2)21至多有一个交点,则双曲线离心率的取值范围是 A.(1,2 B.2,) C.(1, D. ,),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,由题意圆x2(y2)21的圆心(0,2)到bxy0的距离不小于1,,6.(2019河北武邑中学调研)已知直线l:yk(x2)(k0)与抛物线C:y28x相交于A,B两点,F为C的焦点,若|FA|2|FB|,则k等于,1,2,3,4,5
3、,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(4k28)216k40,又k0,解得0k1,,根据抛物线定义及|FA|2|FB|得x122(x22), 即x12x22, 且x10,x20,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,8.(2019河北衡水中学模拟)已知双曲线 1(a0,b0)的左、右焦点分别为F1,F2,过F1作圆x2y2a2的切线,交双曲线右支于点M,若F1MF245,则双曲线的渐近线方程为,1,2,3,4,5,6
4、,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 如图,作OAF1M于点A,F2BF1M于点B. 因为F1M与圆x2y2a2相切,F1MF245,,又点M在双曲线上,,9.(2019湖南五市十校联考)在直角坐标系xOy中,抛物线C:y24x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若NFR60,则|FR|等于,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5
5、,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 由抛物线C:y24x,得焦点F(1,0),准线方程为x1, 因为M,N分别为PQ,PF的中点, 所以MNQF, 所以四边形QMRF为平行四边形,|FR|QM|, 又由PQ垂直l于点Q,可知|PQ|PF|, 因为NFR60,所以PQF为等边三角形, 所以FMPQ,所以|FR|2,故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,即|MF2|3|MF1|.,所以b2a2,所以c2b2
6、a22a2,,11.(2019湖南长沙长郡中学调研)已知点P(1,0),设不垂直于x轴的直线l与抛物线y22x交于不同的两点A,B,若x轴是APB的角平分线,则直线l一定过点 A. B.(1,0) C.(2,0) D.(2,0),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 根据题意,直线的斜率存在且不等于零,设直线的方程为xtym(t0),与抛物线方程联立,消元得y22ty2m0,设A(x1,y1),B(x2,y2), 因为x轴是APB的角平分线, 所以AP,BP的斜率互为相反数,,1,2,3,4,5,6,7,8,9,10,11,12,13,
7、14,15,16,17,18,所以2ty1y2(m1)(y1y2)0, 结合根与系数之间的关系,整理得出 2t(2m)2tm2t0,2t(m1)0, 因为t0,所以m1,所以过定点(1,0),故选B.,12.(2019陕西四校联考)已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且F1PF2 ,记椭圆和双曲线的离心率分别为e1,e2,则 等于 A.4 B.2 C.2 D.3,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 如图所示, 设椭圆的长半轴长为a1,双曲线的实半轴长为a2, 则根据椭圆及双曲线的定义: |PF1|PF2|2a1
8、,|PF1|PF2|2a2, |PF1|a1a2,|PF2|a1a2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,则在PF1F2中,由余弦定理得,二、填空题 13.已知双曲线C:x2y21,则点(4,0)到C的渐近线的距离为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,且A,B分别为该双曲线的左、右焦点, 则|PA|PB|2a2,|PA|224.,4,解析 设A(x1,y1),D(x2,y2), 则|AB|C
9、D|(|AF|1)(|DF|1) (x111)(x211)x1x2, 由yk(x1)与y24x联立方程消y得 k2x2(2k24)xk20, x1x21,因此|AB|CD|1.,15.已知抛物线y24x,圆F:(x1)2y21,直线yk(x1)(k0)自上而下顺次与上述两曲线交于点A,B,C,D,则|AB|CD|的值是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 依题意A(a,0),B(a,0),设P(x,y), 依题意得|PA|2|PB|,,1
10、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解得b1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,三、解答题 17.(2019湖南长沙长郡中学调研)在平面直角坐标系xOy中,已知圆M:(x3)2(yb)2r2(r为正数,bR). (1)若对任意给定的r(0,),直线l:yxr4总能把圆M的周长分成31的两部分,求圆M的标准方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,去绝对值符号可得b1rr或b1rr, 根据恒成立,可得b1, 所以圆M的标准方程为(x
11、3)2(y1)2r2.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(2)已知点A(0,3),B(1,0),且r ,若线段AB上存在一点P,使得过点P的某条直线与圆M交于点S,T(其中|PS|PT|),且|PS|ST|,求实数b的取值范围.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解 根据题意,如果存在满足条件的点,对应的边界值为过圆心的弦, 而从另一个角度,即为线段端点值满足条件即可,先考虑点A,即为|AM|3r,,再考虑点B,即为|BM|3r,即(13)2b210,,18.(2019陕西四校联考
12、)已知抛物线C:y22px过点A(1,1). (1)求抛物线C的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解 由题意得2p1,所以抛物线方程为y2x.,(2)若过点P(3,1)的直线与抛物线C交于M,N两个不同的点(均与点A不重合).设直线AM,AN的斜率分别为k1,k2,求证:k1k2为定值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,证明 设M(x1,y1),N(x2,y2), 直线MN的方程为xt(y1)3, 代入抛物线方程得y2tyt30. 所以(t2)280,y1y2t,y1y2t3.,所以k1k2是定值.,