欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.7抛物线课件

    • 资源ID:107064       资源大小:3.48MB        全文页数:83页
    • 资源格式: PPTX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.7抛物线课件

    1、9.7 抛物线,第九章 平面解析几何,ZUIXINKAOGANG,最新考纲,1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用. 2.了解抛物线的定义、几何图形和标准方程,知道其简单几何性质.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,平面内与一个定点F和一条定直线l(l不经过点F)的距离_的点的轨迹叫做抛物线.点F叫做抛物线的_,直线l叫做抛物线的_.,1.抛物线的概念,知识梳理,ZHISHISHULI,相等,焦点,准线,2.抛物线的标准方程与几何性质,1.若抛物线定义中定点F在定直

    2、线l上时,动点的轨迹是什么图形?,提示 过点F且与l垂直的直线.,2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?,提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.,【概念方法微思考】,(3)抛物线既是中心对称图形,又是轴对称图形.( ),题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”) (1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( ),基础自测,JICHUZICE,1,2,3,4,5,6,7,(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做

    3、抛物线的通径,那么抛物线x22ay(a0)的通径长为2a.( ),1,2,3,4,5,6,7,题组二 教材改编,1,2,3,4,5,6,7,2.过抛物线y24x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1x26,则|PQ|等于 A.9 B.8 C.7 D.6,解析 抛物线y24x的焦点为F(1,0),准线方程为x1. 根据题意可得,|PQ|PF|QF|x11x21x1x228.,1,2,3,4,5,6,7,3.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(2,4),则该抛物线的标准方程为_.,解析 设抛物线方程为y2mx(m0)或x2my(m0). 将P(2

    4、,4)代入,分别得方程为y28x或x2y.,y28x或x2y,4.若抛物线y24x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x4y70的距离之和的最小值是,解析 由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离, 由抛物线y24x及直线方程3x4y70可得直线与抛物线相离. 点P到准线l的距离与点P到直线3x4y70的距离之和的最小值为点F(1,0)到直线3x4y70的距离,,1,2,3,4,5,6,7,题组三 易错自纠,5.设抛物线y28x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是A.4 B.6 C.8 D.12,1,2,3,4,5,6,7,解析 如

    5、图所示, 抛物线的准线l的方程为x2,F是抛物线的焦点, 过点P作PAy轴,垂足是A,延长PA交直线l于点B,则|AB|2. 由于点P到y轴的距离为4, 则点P到准线l的距离|PB|426, 所以点P到焦点的距离|PF|PB|6. 故选B.,1,2,3,4,5,6,7,6.已知抛物线C与双曲线x2y21有相同的焦点,且顶点在原点,则抛物线C的方程是,1,2,3,4,5,6,7,7.设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是_.,1,1,解析 Q(2,0),当直线l的斜率不存在时,不满足题意, 故设直线l的方程为yk(x2), 代入抛物线方

    6、程,消去y整理得k2x2(4k28)x4k20, 由(4k28)24k24k264(1k2)0, 解得1k1.,2,题型分类 深度剖析,PART TWO,题型一 抛物线的定义和标准方程,命题点1 定义及应用,例1 设P是抛物线y24x上的一个动点,若B(3,2),则|PB|PF|的最小值为_.,多维探究,4,解析 如图,过点B作BQ垂直准线于点Q,交抛物线于点P1, 则|P1Q|P1F|. 则有|PB|PF|P1B|P1Q|BQ|4, 即|PB|PF|的最小值为4.,1.若将本例中的B点坐标改为(3,4),试求|PB|PF|的最小值.,解 由题意可知点B(3,4)在抛物线的外部. |PB|PF

    7、|的最小值即为B,F两点间的距离,F(1,0),,2.若将本例中的条件改为:已知抛物线方程为y24x,直线l的方程为xy50,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1d2的最小值.,解 由题意知,抛物线的焦点为F(1,0). 点P到y轴的距离d1|PF|1, 所以d1d2d2|PF|1. 易知d2|PF|的最小值为点F到直线l的距离,,命题点2 求标准方程,例2 设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5,若以MF为直径的圆过点(0,2),则C的标准方程为 A.y24x或y28x B.y22x或y28x C.y24x或y216x D.y22x或

    8、y216x,又因为圆过点(0,2),所以yM4,,所以抛物线C的标准方程为y24x或y216x, 故选C.,(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径. (2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.,跟踪训练1 (1)设P是抛物线y24x上的一个动点,则点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值为_.,解析 如图,易知抛物线的焦点为F(1,0),准线是x1, 由抛物线的定义知

    9、点P到直线x1的距离等于点P到F的距离. 于是,问题转化为在抛物线上求一点P, 使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小, 显然,连接AF与抛物线相交的点即为满足题意的点,,(2)如图所示,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的标准方程为,解析 分别过点A,B作AA1l,BB1l,且垂足分别为A1,B1, 由已知条件|BC|2|BF|,得|BC|2|BB1|, 所以BCB130. 又|AA1|AF|3, 所以|AC|2|AA1|6, 所以|CF|AC|AF|633, 所以F为线段AC的

    10、中点.,故抛物线的标准方程为y23x.,题型二 抛物线的几何性质,师生共研,设AB的方程为x1ty,,解析 设A(x1,y1),B(x2,y2)(y10,y20),如图所示,|AF|x113,,(2)过点P(2,0)的直线与抛物线C:y24x相交于A,B两点,且|PA| |AB|,则点A到抛物线C的焦点的距离为,解析 设A(x1,y1),B(x2,y2),分别过点A,B作直线x2的垂线,垂足分别为点D,E.,在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.,跟踪训练2 (1)已知直线l过抛物线C的焦点,且与C的对称轴垂直,

    11、l与C交于A,B两点,|AB|12,P为C的准线上一点,则ABP的面积为 A.18 B.24 C.36 D.48,解析 以抛物线的顶点为原点,水平方向为x轴,竖直方向为y轴,建立平面直角坐标系,,因为点P在准线上,所以点P到AB的距离为p6,,题型三 直线与抛物线,师生共研,例4 设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3. (1)求抛物线的标准方程;,解 设抛物线的方程是x22py(p0),A(x1,y1),B(x2,y2), 由抛物线定义可知y1y2p8, 又AB的中点到x轴的距离为3, y1y26,p2,

    12、 抛物线的标准方程是x24y.,(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点.连接QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.,解 由题意知,直线m的斜率存在,设直线m:ykx6(k0),P(x3,y3),Q(x4,y4),,又Q,F,R三点共线,kQFkFR,又F(0,1),,整理得(x3x4)24(x3x4)22x3x41616x3x40,,(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系. (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接

    13、使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式. (3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.,提醒:涉及弦的中点、斜率时一般用“点差法”求解. (4)设AB是过抛物线y22px(p0)焦点F的弦, 若A(x1,y1),B(x2,y2),则,以弦AB为直径的圆与准线相切. 通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.,跟踪训练3 (2018武汉调研)已知抛物线C:x22py(p0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线交点为N. (1)若N在以AB为直

    14、径的圆上,求p的值;,解 可设AB:ykx1,A(x1,y1),B(x2,y2), 将AB的方程代入抛物线C,得 x22pkx2p0,4p2k28p0,显然方程有两不等实根, 则x1x22pk,x1x22p. ,则有p2.,(2)若ABN面积的最小值为4,求抛物线C的方程.,又N在yAN和yBN上,,N(pk,1).,例 (12分)已知抛物线C:ymx2(m0),焦点为F,直线2xy20交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q. (1)求抛物线C的焦点坐标; (2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (3)是否存在实数m,使A

    15、BQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,请说明理由.,答题模板,DATIMUBAN,直线与圆锥曲线问题的求解策略,规范解答,消去y得mx22x20(m0), 依题意,有(2)24m(2)8m40恒成立, 方程必有两个不等实根. 6分,P是线段AB的中点,,m0,m2. 存在实数m2,使ABQ是以Q为直角顶点的直角三角形. 12分,答题模版 解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x或y的一元二次方程; 第二步:写 出根与系数的关系,并求出0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x1x2,x1x2(或y1y2,y1y2

    16、)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.,3,课时作业,PART THREE,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1.抛物线yax2的准线方程是y1,则a的值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,2.(2018泰安诊断)设F为抛物线y22x的焦点,A,B,C为抛物线上三点,若F为ABC的重心,则 的值为 A.1 B.2 C.3 D.4,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.(2018辽宁五校联考)抛物线x24y的焦点为F,过点F作

    17、斜率为 的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则AHF的面积是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由抛物线的定义可得|AF|AH|,,FAH60,故AHF为等边三角形.,4.(2018江西上高二中、丰城中学联考)抛物线C:y22px(p0)的焦点为F,M是抛物线C上的点,若OFM的外接圆与抛物线C的准线相切,且该圆的面积为36,则p等于 A.2 B.4 C.6 D.8,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 OFM的外接圆与抛物线C的准线相切, OFM的外接圆

    18、的圆心到准线的距离等于圆的半径. 圆的面积为36,圆的半径为6.,5.已知直线l:ykxk(kR)与抛物线C:y24x及其准线分别交于M,N两点,F为抛物线的焦点,若 ,则实数k等于,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 抛物线C:y24x的焦点F(1,0),直线l:ykxk过抛物线的焦点. 当k0时,如图所示, 过点M作MM垂直于准线x1,垂足为M, 由抛物线的定义,得|MM|MF|, 易知MMN与直线l的倾斜角相等,,6.已知抛物线C的顶点是原点O,焦点F在x轴的正半

    19、轴上,经过点F的直线与抛物线C交于A,B两点,若 12,则抛物线C的方程为 A.x28y B.x24y C.y28x D.y24x,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由题意,设抛物线方程为y22px(p0),,消去x得y22pmyp20,显然方程有两个不等实根. 设A(x1,y1),B(x2,y2),则y1y22pm,y1y2p2,,得p4(舍负),即抛物线C的方程为y28x.,解析 动点P到点A(0,2)的距离比它到直线l:y4的距离小2, 动点P到点A(0,2)的

    20、距离与它到直线y2的距离相等. 根据抛物线的定义可得点P的轨迹为以A(0,2)为焦点,以直线y2为准线的抛物线,其标准方程为x28y.,7.(2018新余市第一中学模拟)动点P到点A(0,2)的距离比它到直线l:y4的距离小2,则动点P的轨迹方程为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,x28y,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.(2018武汉质检)已知F是抛物线y24x的焦点,A,B是抛物线上两点,若AFB是等边三角形,则AFB的边长为_.,解析 由题意可知点A,B一定关于x轴对称,且AF,BF与x轴

    21、夹角均为30,由于y24x的焦点为(1,0),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9.已知直线l:ykxt与圆:x2(y1)21相切,且与抛物线C:x24y交于不同的两点M,N,则实数t的取值范围是_.,t0或t3,解析 由题意知k0.因为直线l与圆相切,,由k20,得t0或t0,得t0或t0或t3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.(2018唐山五校联考)过抛物线y22px(p0)的焦点F作直线交抛物线于A,B两点,若|AF|2|BF|6,则p_.,4,将直线AB的方程代入抛物线方程得y22pmy

    22、p20, 所以y1y2p2,4x1x2p2. 设抛物线的准线为l,过A作ACl,垂足为C,过B作BDl,垂足为D,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以x1x23,x1x29p, 所以(x1x2)2(x1x2)24x1x2p2, 即18p720,解得p4.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,11.(2018郑州模拟)已知过抛物线y22px(p0)的焦点,斜率为 的直线交抛物线于A(x1,y1),B(x2,y2)(x1x2)两点,且|AB|9. (1)求该抛物线的方程;,从而有4x25pxp20. 由题意知

    23、,25p216p29p20,方程必有两个不等实根.,所以p4,从而抛物线方程为y28x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 由于p4,则4x25pxp20, 即x25x40,从而x11,x24,,整理得(21)241,解得0或2.,12.(2018贵阳模拟)过抛物线C:y24x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|8. (1)求l的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 易知点F的坐标为(1,0),

    24、则直线l的方程为yk(x1), 代入抛物线方程y24x得k2x2(2k24)xk20, 由题意知k0,且(2k24)24k2k216(k21)0, 设A(x1,y1),B(x2,y2),,由抛物线定义知|AB|x1x228,,直线l的方程为y(x1).,(2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 由抛物线的对称性知,D点的坐标为(x1,y1),,即y1y24(y1,y2异号), 直线BD的方程为4(x1)(y1y2)y0,恒过点(1,0).,技能提升练,1,2,3,4,5,6,7,8

    25、,9,10,11,12,13,14,15,16,13.(2018益阳、湘潭质检)如图所示,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|4,则线段AB的长为,解析 方法一 如图所示, 设l与x轴交于点M,过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2,所以抛物线的方程为y24x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,代入抛物线方程

    26、y24x得,3x210x30,,故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二 如图所示,设l与x轴交于点M, 过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2, 所以抛物线的方程为y24x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法三 如图所示,设l与x轴交于点M, 过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2, 所以抛物线的方程

    27、为y24x.,14.(2018广东七校联考)如图所示,抛物线y x2,AB为过焦点F的弦,过A,B分别作抛物线的切线,两切线交于点M,设A(xA,yA),B(xB,yB),M(xM,yM),则:若AB的斜率为1,则|AB|4;|AB|min2;yM1;若AB的斜率为1,则xM1;xAxB4.以上结论正确的个数是 A.1 B.2 C.3 D.4,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由题意得,焦点F(0,1),对于,lAB的方程为yx1,与抛物线的方程联立,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以yAyB6

    28、,则|AB|yAyBp8,则错误; 对于,|AB|min2p4,则错误;,设lAB的方程为ykx1,与抛物线的方程联立,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以xAxB4k,xAxB4, 所以yM1,和均正确; 对于,当AB的斜率为1时,xM2,则错误,故选B.,拓展冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,即为半圆M:(x8)2y249(y0), 由题意得B,C为半圆M与抛物线y22x的两个交点, 由y22x与(x8)2y

    29、249(y0)联立方程组得x214x150, 方程必有两不等实根,设B(x1,y1),C(x2,y2).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16.设直线l与抛物线y24x相交于A,B两点,与圆(x5)2y2r2(r0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是_.,(2,4),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 如图,,两式相减得,(y1y2)(y1y2)4(x1x2). 当l的斜率k不存在时,符合条件的直线l必有两条.,又y1y22y0,所以y0k2.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,即y0k5x0,因此25x0,x03, 即M必在直线x3上.将x3代入y24x,,因为点M在圆上,,所以4r216,即2r4.,


    注意事项

    本文(鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.7抛物线课件)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开