欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.5复数课件

    • 资源ID:107188       资源大小:4.61MB        全文页数:61页
    • 资源格式: PPTX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.5复数课件

    1、5.5 复数,第五章 平面向量与复数,ZUIXINKAOGANG,最新考纲,1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 2.理解复数的基本概念及复数相等的充要条件. 3.了解复数的代数表示法及其几何意义. 4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,知识梳理,1.复数的有关概念 (1)定义:形如abi(a,bR)的数叫

    2、做复数,其中a叫做复数z的 ,b叫做复数z的 (i为虚数单位). (2)分类:,ZHISHISHULI,实部,虚部,b0,b0,a0且b0,(3)复数相等:abicdi (a,b,c,dR). (4)共轭复数:abi与cdi共轭 (a,b,c,dR).,ac且bd,ac,bd,|abi|,|z|,2.复数的几何意义 复数zabi与复平面内的点 及平面向量 (a,b)(a,bR)是一一对应关系. 3.复数的运算 (1)运算法则:设z1abi,z2cdi,a,b,c,dR.,Z(a,b),(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.,1.复数abi的实部为a,虚部为b吗? 提示

    3、 不一定.只有当a,bR时,a才是实部,b才是虚部. 2.如何理解复数的加法、减法的几何意义? 提示 复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.,【概念方法微思考】,题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“”或“”) (1)方程x2x10没有解.( ) (2)复数zabi(a,bR)中,虚部为bi.( ) (3)复数中有相等复数的概念,因此复数可以比较大小.( ) (4)原点是实轴与虚轴的交点.( ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ),1,2,3,4,5,6,7,基础自测,JICHUZICE,题组二

    4、 教材改编,1,2,3,4,5,6,7,|z|1.故选C.,1,2,3,4,5,6,7,1,2,3,4,5,6,4.若复数z(x21)(x1)i为纯虚数,则实数x的值为 A.1 B.0 C.1 D.1或1,7,题组三 易错自纠 5.设a,bR,i是虚数单位,则“ab0”是“复数a 为纯虚数”的 A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件,1,2,3,4,5,6,7,1,2,3,4,5,6,6.(2018葫芦岛模拟)若复数z满足iz22i(i为虚数单位),则z的共轭复数 在复平面内对应的点所在的象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限,7

    5、,7.i2 014i2 015i2 016i2 017i2 018i2 019i2 020_.,1,2,3,4,5,6,i,7,解析 原式i2i3i4i1i2i3i4i.,2,题型分类 深度剖析,PART TWO,题型一 复数的概念,自主演练,1.(2018武汉华中师大一附中月考)若复数z满足(12i)z1i,则复数z的虚部为,解析 因为(12i)z1i,,3.(2018烟台模拟)已知复数 是纯虚数(i是虚数单位),则实数a等于 A.4 B.4 C.1 D.1,2a20且a40,解得a1.故选C.,复数的基本概念有实部、虚部、虚数、纯虚数、共轭复数等,在解题中要注意辨析概念的不同,灵活使用条件

    6、得出符合要求的解.,命题点1 复数的乘法运算 例1 (1)(2018全国)(1i)(2i)等于 A.3i B.3i C.3i D.3i,题型二 复数的运算,多维探究,解析 (1i)(2i)22iii23i.,A.32i B.32i C.32i D.32i,解析 i(23i)2i3i232i,故选D.,命题点2 复数的除法运算,故选D.,A.i B.i C.1i D.1i,命题点3 复数的综合运算,解析 对于两个复数1i,1i,,(1i)(1i)2,故不正确;,22(1i)2(1i)212i112i10,故正确.故选C.,(1)复数的乘法:复数乘法类似于多项式的四则运算. (2)复数的除法:除法

    7、的关键是分子分母同乘以分母的共轭复数.,(2)(2018潍坊模拟)若复数z满足z(2i)(2i)(34i),则|z|等于,解析 由题意z(2i)(2i)(34i)105i,,题型三 复数的几何意义,师生共研,例4 (1)(2018天津河东区模拟)i是虚数单位,复数 在复平面上对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限,(2)如图所示,平行四边形OABC,顶点O,A,C分别表示0,32i,24i,试求:,B点对应的复数.,即B点对应的复数为16i.,复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接

    8、给出结论即可.,A.第四象限 B.第三象限 C.第二象限 D.第一象限,解析 由已知得A(1,2),B(1,1),C(3,2),,5,(3,2)x(1,2)y(1,1)(xy,2xy),,3,课时作业,PART THREE,1.已知复数z168i,z2i,则 等于 A.86i B.86i C.86i D.86i,基础保分练,解析 z168i,z2i,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,3.(2018海淀模拟)已知复数z在复平面

    9、上对应的点为(1,1),则 A.z1是实数 B.z1是纯虚数 C.zi是实数 D.zi是纯虚数,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 由题意得复数z1i,所以z12i,不是实数,所以选项A错误, 也不是纯虚数,所以选项B错误. 所以zi1,是实数, 所以选项C正确,zi是纯虚数错误,所以选项D错误. 故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4

    10、,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,8.已知集合M1,m,3(m25m6)i,N1,3,若MN3,则实数m的值为_.,解析 MN3,3M且1M, m1,3(m25m6)i3或m3, m25m60且m1或m3, 解得m6或m3,经检验符合题意.,3或6,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,9.(2018江苏)若复数z满足iz12i,其中i是虚数单位,则z的实部为_.,z的实部为2

    11、.,2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,4i,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,13.(2018厦门质检)已知复数z满足(1i)zi3,则|z|_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,14.

    12、(2018天津调研)已知i为虚数单位,复数z(1i)23i,则z的虚部为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 由z(1i)23i,,15.已知复数zbi(bR), 是实数,i是虚数单位. (1)求复数z;,解 因为zbi(bR),,所以b2,即z2i.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,(2)若复数(mz)2所表示的点在第一象限,求实数m的取值范围.,解 因为z2i,mR, 所以(mz)2(m2i)2m24mi4i2 (m24)4mi, 又因为复数(m

    13、z)2所表示的点在第一象限,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,所以解得m2,,16.若虚数z同时满足下列两个条件: z 是实数; z3的实部与虚部互为相反数. 这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解 存在.设zabi(a,bR,b0),,所以z12i或z2i.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,17.(2018威海模拟)若复数 (i是

    14、虚数单位)在复平面内对应的点在第一象限,则实数a的取值范围是 A.(,1) B.(1,) C.(1,1) D.(,1)(1,),技能提升练,因为z在复平面内对应的点在第一象限,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,拓展冲刺练,19.复数z1,z2满足z1m(4m2)i,z22cos (4sin )i(m,R),并且z1z2,则的取值范围是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,

    15、19,20,化简得44cos24sin , 由此可得4cos24sin 4 4(1sin2)4sin 4,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,因为sin 1,1, 所以4sin24sin 1,8.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.给出下列命题: 若zC,则z20; 若a,bR,且ab,则aibi; 若aR,则(a1)i是纯虚数; 若zi,则z31在复平面内对应的点位于第一象限. 其中正确的命题是_.(填上所有正确命题的序号),解析 由复数的概念及性质知,错误;错误; 若a1,则a10,不满足纯虚数的条件,错误; z31(i)31i1,正确.,


    注意事项

    本文(鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.5复数课件)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开