欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量第5讲直线平面垂直的判定及其性质练习含解析

    • 资源ID:107355       资源大小:203.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量第5讲直线平面垂直的判定及其性质练习含解析

    1、第5讲直线、平面垂直的判定及其性质一、选择题1.(2015浙江卷)设,是两个不同的平面,l,m是两条不同的直线,且l,m()A.若l,则 B.若,则lmC.若l,则 D.若,则lm解析由面面垂直的判定定理,可知A选项正确;B选项中,l与m可能平行;C选项中,与可能相交;D选项中,l与m可能异面.答案A2.(2017深圳四校联考)若平面,满足,l,P,Pl,则下列命题中是假命题的为()A.过点P垂直于平面的直线平行于平面B.过点P垂直于直线l的直线在平面内C.过点P垂直于平面的直线在平面内D.过点P且在平面内垂直于l的直线必垂直于平面解析由于过点P垂直于平面的直线必平行于平面内垂直于交线的直线,

    2、因此也平行于平面,因此A正确.过点P垂直于直线l的直线有可能垂直于平面,不一定在平面内,因此B不正确.根据面面垂直的性质定理知,选项C,D正确.答案B3.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC平面PDFB.DF平面PAEC.平面PDF平面PAED.平面PDE平面ABC解析因为BCDF,DF平面PDF,BC平面PDF,所以BC平面PDF,故选项A正确.在正四面体中,AEBC,PEBC,AEPEE,BC平面PAE,DFBC,则DF平面PAE,又DF平面PDF,从而平面PDF平面PAE.因此选项B,C均正确.答案D4.(2017西安调研

    3、)设l是直线,是两个不同的平面,则下列说法正确的是()A.若l,l,则 B.若l,l,则C.若,l,则l D.若,l,则l解析A中,或与相交,不正确.B中,过直线l作平面,设l,则ll,由l,知l,从而,B正确.C中,l或l,C不正确.D中,l与的位置关系不确定.答案B5.(2017天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABD和ACD折成互相垂直的两个平面后,某学生得出下列四个结论:BDAC;BAC是等边三角形;三棱锥DABC是正三棱锥;平面ADC平面ABC.其中正确的是()A. B.C. D.解析由题意知,BD平面ADC,且AC平面ADC,故BDAC,正

    4、确;AD为等腰直角三角形斜边BC上的高,平面ABD平面ACD,所以ABACBC,BAC是等边三角形,正确;易知DADBDC,又由知正确;由知错.答案B二、填空题6.如图,已知PA平面ABC,BCAC,则图中直角三角形的个数为_.解析PA平面ABC,AB,AC,BC平面ABC,PAAB,PAAC,PABC,则PAB,PAC为直角三角形.由BCAC,且ACPAA,BC平面PAC,从而BCPC,因此ABC,PBC也是直角三角形.答案47.如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为正确的条件即可).解

    5、析由定理可知,BDPC.当DMPC(或BMPC)时,有PC平面MBD.又PC平面PCD,平面MBD平面PCD.答案DMPC(或BMPC等)8.(2016全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有_(填写所有正确命题的编号).解析对于,可以平行,也可以相交但不垂直,故错误.对于,由线面平行的性质定理知存在直线l,nl,m,所以ml,所以mn,故正确.对于,因为,所以,没有公共点.又m,所以m,没有公共点,由线面平行的定义可知m,故正确.对于,因为mn,所以m

    6、与所成的角和n与所成的角相等.因为,所以n与所成的角和n与所成的角相等,所以m与所成的角和n与所成的角相等,故正确.答案三、解答题9.(2017青岛质检)如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120,E,F,G分别为AC,DC,AD的中点.(1)求证:EF平面BCG;(2)求三棱锥DBCG的体积.(1)证明由已知得ABCDBC,因此ACDC.又G为AD的中点,所以CGAD.同理BGAD,又BGCGG,因此AD平面BCG.又EFAD,所以EF平面BCG.(2)解在平面ABC内,作AOBC,交CB的延长线于O,如图由平面ABC平面BCD,平面ABC平面BDCBC,AO

    7、平面ABC,知AO平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在AOB中,AOABsin 60,所以VDBCGVGBCDSDBChBDBCsin 120.10.(2016北京卷)如图,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA平面CEF?说明理由.(1)证明因为PC平面ABCD,所以PCDC.又因为ACDC,且PCACC,所以DC平面PAC.(2)证明因为ABCD,DCAC,所以ABAC.因为PC平面ABCD,所以PCAB.又因为

    8、PCACC,所以AB平面PAC.又AB平面PAB,所以平面PAB平面PAC.(3)解棱PB上存在点F,使得PA平面CEF.理由如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,所以EFPA.又因为PA平面CEF,且EF平面CEF,所以PA平面CEF.11.设m,n是两条不同的直线,是两个不同的平面.则下列说法正确的是()A.若mn,n,则mB.若m,则mC.若m,n,n,则mD.若mn,n,则m解析A中,由mn,n可得m或m与相交或m,错误;B中,由m,可得m或m与相交或m,错误;C中,由m,n可得mn,又n,所以m,正确;D中,由mn,n,可得m或m与相交或m,错误.答案C1

    9、2.(2017贵阳模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在AEF内的射影为O,则下列说法正确的是()A.O是AEF的垂心 B.O是AEF的内心C.O是AEF的外心 D.O是AEF的重心解析由题意可知PA,PE,PF两两垂直,所以PA平面PEF,从而PAEF,而PO平面AEF,则POEF,因为POPAP,所以EF平面PAO,EFAO,同理可知AEFO,AFEO,O为AEF的垂心.答案A13.如图,已知六棱锥PABCDEF的底面是正六边形,PA平面ABC,PA2AB,则下列结论中:PBAE

    10、;平面ABC平面PBC;直线BC平面PAE;PDA45.其中正确的有_(把所有正确的序号都填上).解析由PA平面ABC,AE平面ABC,得PAAE,又由正六边形的性质得AEAB,PAABA,得AE平面PAB,又PB平面PAB,AEPB,正确;又平面PAD平面ABC,平面ABC平面PBC不成立,错;由正六边形的性质得BCAD,又AD平面PAD,BC平面PAD,BC平面PAD,直线BC平面PAE也不成立,错;在RtPAD中,PAAD2AB,PDA45,正确.答案14.(2016四川卷)如图,在四棱锥PABCD中,PACD,ADBC,ADCPAB90,BCCDAD.(1)在平面PAD内找一点M,使得

    11、直线CM平面PAB,并说明理由.(2)证明:平面PAB平面PBD.(1)解取棱AD的中点M(M平面PAD),点M即为所求的一个点,理由如下:因为ADBC,BCAD.所以BCAM,且BCAM.所以四边形AMCB是平行四边形,从而CMAB.又AB平面PAB.CM平面PAB.所以CM平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,PAAB,PACD.因为ADBC,BCAD,所以直线AB与CD相交,所以PA平面ABCD.又BD平面ABCD,从而PABD.因为ADBC,BCAD,M为AD的中点,连接BM,所以BCMD,且BCMD.所以四边形BCDM是平行四边形,所以BMCDAD,所以BDAB.又ABAPA,所以BD平面PAB.又BD平面PBD,所以平面PAB平面PBD.6


    注意事项

    本文(鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量第5讲直线平面垂直的判定及其性质练习含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开