欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.4直线平面垂直的判定与性质教案含解析

    • 资源ID:107923       资源大小:1,006.72KB        全文页数:21页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.4直线平面垂直的判定与性质教案含解析

    1、8.4直线、平面垂直的判定与性质最新考纲1.以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题1直线与平面垂直(1)定义如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l,直线l叫做平面的垂线,平面叫做直线l的垂面(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理垂直于同一个平面的两条直线平行ab2直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐

    2、角,叫做这条直线和这个平面所成的角若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0的角(2)范围:.3平面与平面垂直(1)二面角的有关概念二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直性质定理两个平面垂

    3、直,则一个平面内垂直于交线的直线与另一个平面垂直l概念方法微思考1若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面2两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该

    4、交线垂直于第三个平面题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行()(3)直线a,b,则ab.()(4)若,a,则a.()(5)若直线a平面,直线b,则直线a与b垂直()(6)若平面内的一条直线垂直于平面内的无数条直线,则.()题组二教材改编2下列命题中错误的是()A如果平面平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平面答案D解析对于D,若平面平面,则平面内的

    5、直线可能不垂直于平面,即与平面的关系还可以是斜交、平行或在平面内,其他选项均是正确的3在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PAPBPC,则点O是ABC的_心;(2)若PAPB,PBPC,PCPA,则点O是ABC的_心答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在RtPOA,RtPOB和RtPOC中,PAPCPB,所以OAOBOC,即O为ABC的外心(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.PCPA,PBPC,PAPBP,PA,PB平面PAB,PC平面PAB,又AB平面PAB,PCAB,ABPO,POPCP,PO,PC平

    6、面PGC,AB平面PGC,又CG平面PGC,ABCG,即CG为ABC边AB上的高同理可证BD,AH分别为ABC边AC,BC上的高,即O为ABC的垂心题组三易错自纠4(2018赣州模拟)若l,m为两条不同的直线,为平面,且l,则“m”是“ml”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案A解析由l且m能推出ml,充分性成立;若l且ml,则m或者m,必要性不成立,因此“m”是“ml”的充分不必要条件,故选A.5.如图所示,在正方体ABCDA1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A与AC,MN均垂直B

    7、与AC垂直,与MN不垂直C与AC不垂直,与MN垂直D与AC,MN均不垂直答案A解析因为DD1平面ABCD,所以ACDD1,又因为ACBD,DD1BDD,所以AC平面BDD1B1,因为OM平面BDD1B1,所以OMAC.设正方体的棱长为2,则OM,MN,ON,所以OM2MN2ON2,所以OMMN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()AMNABB平面VAC平面VBCCMN与BC所成的角为45DOC平面VAC答案B解析由题意得BCAC,因为VA平面ABC,BC平面ABC,所以VA

    8、BC.因为ACVAA,所以BC平面VAC.因为BC平面VBC,所以平面VAC平面VBC.故选B.题型一直线与平面垂直的判定与性质例1如图所示,在直三棱柱ABCA1B1C1中,ABACAA13,BC2,D是BC的中点,F是CC1上一点当CF2时,证明:B1F平面ADF.证明因为ABAC,D是BC的中点,所以ADBC.在直三棱柱ABCA1B1C1中,因为BB1底面ABC,AD底面ABC,所以ADB1B.因为BCB1BB,BC,B1B平面B1BCC1,所以AD平面B1BCC1.因为B1F平面B1BCC1,所以ADB1F.方法一在矩形B1BCC1中,因为C1FCD1,B1C1CF2,所以RtDCFRt

    9、FC1B1,所以CFDC1B1F,所以B1FD90,所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF.方法二在RtB1BD中,BDCD1,BB13,所以B1D.在RtB1C1F中,B1C12,C1F1,所以B1F.在RtDCF中,CF2,CD1,所以DF.显然DF2B1F2B1D2,所以B1FD90.所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF.思维升华证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:判定定理;垂直于平面的传递性;面面垂直的性质(2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质跟踪训练1

    10、(2018贵阳模拟)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.证明(1)在平面ABD内,因为ABAD,EFAD,则ABEF.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCDBD,BC平面BCD,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCABB,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.题型二平面与平面垂直的判定与性质例2

    11、(2018全国)如图,在平行四边形ABCM中,ABAC3,ACM90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥QABP的体积(1)证明由已知可得,BAC90,即BAAC.又BAAD,ADACA,AD,AC平面ACD,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)解由已知可得,DCCMAB3,DA3.又BPDQDA,所以BP2.如图,过点Q作QEAC,垂足为E,则QEDC且QEDC.由已知及(1)可得,DC平面ABC,所以QE平面ABC,QE1.因此

    12、,三棱锥QABP的体积为VQABPSABPQE32sin4511.思维升华 (1)判定面面垂直的方法面面垂直的定义;面面垂直的判定定理(a,a)(2)在已知平面垂直时,一般要用性质定理进行转化在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直跟踪训练2(2018武昌调研)如图,三棱锥PABC中,底面ABC是边长为2的正三角形,PAPC,PB2.(1)求证:平面PAC平面ABC;(2)若PAPC,求三棱锥PABC的体积证明(1)如图,取AC的中点O,连接BO,PO,因为ABC是边长为2的正三角形,所以BOAC,BO.因为PAPC,所以POAC1.因为PB2,所以OP2OB2PB2

    13、,所以POOB.因为ACOPO,AC,OP平面PAC,所以BO平面PAC.又OB平面ABC,所以平面PAC平面ABC.(2)解因为PAPC,PAPC,AC2,所以PAPC.由(1)知BO平面PAC,所以VPABCVBAPCSPACBO.题型三垂直关系的综合应用命题点1直线与平面所成的角例3 如图,AB是O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的一动点(1)证明:PBC是直角三角形;(2)若PAAB2,且当直线PC与平面ABC所成角的正切值为时,求直线AB与平面PBC所成角的正弦值(1)证明AB是O的直径,C是圆周上不同于A,B的一动点BCAC,PA平面ABC,BCPA,又PAA

    14、CA,PA,AC平面PAC,BC平面PAC,BCPC,BPC是直角三角形(2)解如图,过A作AHPC于H,BC平面PAC,BCAH,又PCBCC,PC,BC平面PBC,AH平面PBC,ABH是直线AB与平面PBC所成的角,PA平面ABC,PCA即是PC与平面ABC所成的角,tanPCA,又PA2,AC,在RtPAC中,AH,在RtABH中,sinABH,即直线AB与平面PBC所成角的正弦值为.命题点2与垂直有关的探索性问题例4如图,直三棱柱ABCA1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知ABAC,AA13,BCCF2.(1)求证:C1E平面ADF;(2)设点M在棱B

    15、B1上,当BM为何值时,平面CAM平面ADF.(1)证明连接CE交AD于O,连接OF.因为CE,AD为ABC的中线,则O为ABC的重心,故,故OFC1E,因为OF平面ADF,C1E平面ADF,所以C1E平面ADF.(2)解当BM1时,平面CAM平面ADF.证明如下:因为ABAC,AD平面ABC,故ADBC.在直三棱柱ABCA1B1C1中,BB1平面ABC,BB1平面B1BCC1,故平面B1BCC1平面ABC.又平面B1BCC1平面ABCBC,AD平面ABC,所以AD平面B1BCC1,又CM平面B1BCC1,故ADCM.又BM1,BC2,CD1,FC2,故RtCBMRtFCD.易证CMDF,又D

    16、FADD,DF,AD平面ADF,故CM平面ADF.又CM平面CAM,故平面CAM平面ADF.思维升华对命题条件的探索的三种途径途径一:先猜后证途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性途径三:将几何问题转化为代数问题跟踪训练3如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE平面ABCD,EFAB,EGAD,EFEG1.(1)求证:平面CFG平面ACE;(2)在AC上是否存在一点H,使得EH平面CFG?若存在,求出CH的长,若不存在,请说明理由(1)证明连接BD交AC于点O,则BDAC.设AB,AD的中点分别为M,N,连接MN,则MNBD,连接

    17、FM,GN,则FMGN,且FMGN,所以四边形FMNG为平行四边形,所以MNFG,所以BDFG,所以FGAC.由于AE平面ABCD,所以AEBD.所以FGAE,又因为ACAEA,AC,AE平面ACE,所以FG平面ACE.又FG平面CFG,所以平面CFG平面ACE.(2)解存在设平面ACE交FG于Q,则Q为FG的中点,连接EQ,CQ,取CO的中点H,连接EH,由已知易知,平面EFG平面ABCD,又平面ACE平面EFGEQ,平面ACE平面ABCDAC,所以CHEQ,又CHEQ,所以四边形EQCH为平行四边形,所以EHCQ,又CQ平面CFG,EH平面CFG,所以EH平面CFG,所以在AC上存在一点H

    18、,使得EH平面CFG,且CH.1已知互相垂直的平面,交于直线l,若直线m,n满足m,n,则()AmlBmnCnlDmn答案C解析因为l,所以l,又n,所以nl.2(2018潍坊模拟)已知m,n是空间中两条不同的直线,是两个不同的平面,有以下结论:m,n,mn;m,n,m,n;m,n,mn;m,mnn.其中正确结论的个数是()A0B1C2D3答案B解析由题意,对于中,若m,n,mn,则两平面可能是平行的,所以不正确;对于中,若m,n,m,n,只有当m与n相交时,才能得到,所以不正确;对于中,若m,n,mn,根据线面垂直和面面垂直的判定定理,可得,所以是正确的;对于中,若m,mn,nn,所以是不正

    19、确的,综上可知,正确的命题只有一个,故选B.3.如图,在四面体DABC中,若ABCB,ADCD,E是AC的中点,则下列结论正确的是()A平面ABC平面ABDB平面ABD平面BDCC平面ABC平面BDE,且平面ADC平面BDED平面ABC平面ADC,且平面ADC平面BDE答案C解析因为ABCB,且E是AC的中点,所以BEAC,同理有DEAC,于是AC平面BDE.因为AC在平面ABC内,所以平面ABC平面BDE.又由于AC平面ACD,所以平面ACD平面BDE.4(2018昆明适应性检测)在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则()AMNC1D1BMNBC1CMN平面

    20、ACD1DMN平面ACC1答案D解析对于选项A,因为M,N分别是BC1,CD1的中点,所以点N平面CDD1C1,点M平面CDD1C1,所以直线MN是与平面CDD1C1相交的直线,又因为直线C1D1在平面CDD1C1内,故直线MN与直线C1D1不可能平行,故选项A错;对于选项B,正方体中易知NBNC1,因为点M是BC1的中点,所以直线MN与直线BC1不垂直,故选项B不对;对于选项C,假设MN平面ACD1,可得MNCD1,因为N是CD1的中点,所以MCMD1,这与MCMD1矛盾,故假设不成立,所以选项C不对;对于选项D,分别取B1C1,C1D1的中点P,Q,连接PM,QN,PQ.因为点M是BC1的

    21、中点,所以PMCC1且PMCC1.同理QNCC1且QNCC1.所以PMQN且PMQN,所以四边形PQNM为平行四边形所以PQMN.在正方体中,CC1PQ,PQAC,因为ACCC1C,AC平面ACC1,CC1平面ACC1,所以PQ平面ACC1.因为PQMN,所以MN平面ACC1.故选项D正确5已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.答案B解析如图,取正三角形ABC的中心O,连接OP,则PAO是PA与平面ABC所成的角因为底面边长为,所以AD,AOAD1.三棱柱的体积为()2AA

    22、1,解得AA1,即OPAA1,所以tanPAO,因为直线与平面所成角的范围是,所以PAO.6.如图,已知PA平面ABC,BCAC,则图中直角三角形的个数为_答案4解析PA平面ABC,AB,AC,BC平面ABC,PAAB,PAAC,PABC,则PAB,PAC为直角三角形由BCAC,且ACPAA,得BC平面PAC,从而BCPC,因此ABC,PBC也是直角三角形7.如图,在斜三棱柱ABCA1B1C1中,BAC90,BC1AC,则C1在底面ABC上的射影H必在直线_上答案AB解析ACAB,ACBC1,ABBC1B,AC平面ABC1.又AC平面ABC,平面ABC1平面ABC.C1在平面ABC上的射影H必

    23、在两平面交线AB上8.如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只要填写一个你认为正确的条件即可)答案DMPC(或BMPC等)解析PA底面ABCD,BDPA,连接AC,则BDAC,且PAACA,BD平面PAC,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.9.如图,在长方体ABCDA1B1C1D1中,ABBC2,AA11,则AC1与平面A1B1C1D1所成角的正弦值为_答案解析连接A1C1,则AC1A1为AC1与平面A1B1C1D1所成的角因为ABBC2,所

    24、以A1C1AC2,又AA11,所以AC13,所以sinAC1A1.10.如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上点P到直线CC1的距离的最小值为_答案解析点P到直线CC1的距离等于点P在平面ABCD上的射影到点C的距离,设点P在平面ABCD上的射影为P,显然点P到直线CC1的距离的最小值为PC的长度的最小值当PCDE时,PC的长度最小,此时PC.11.如图,在四棱锥PABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:ABEF;(2)若AFEF,求证:平面PAD平面ABCD.证明(1)因为四边形A

    25、BCD是矩形,所以ABCD.又AB平面PDC,CD平面PDC,所以AB平面PDC,又因为AB平面ABE,平面ABE平面PDCEF,所以ABEF.(2)因为四边形ABCD是矩形,所以ABAD.因为AFEF,(1)中已证ABEF,所以ABAF.又ABAD,由点E在棱PC上(异于点C),所以点F异于点D,所以AFADA,AF,AD平面PAD,所以AB平面PAD,又AB平面ABCD,所以平面PAD平面ABCD.12.如图,在四棱锥PABCD中,PA平面ABCD,PAABBC,ADCD1,ADC120,点M是AC与BD的交点,点N在线段PB上,且PNPB.(1)证明:MN平面PDC;(2)求直线MN与平

    26、面PAC所成角的正弦值(1)证明因为ABBC,ADCD,所以BD垂直平分线段AC.又ADC120,所以MDAD,AM.所以AC.又ABBC,所以ABC是等边三角形,所以BM,所以3,又因为PNPB,所以3,所以MNPD.又MN平面PDC,PD平面PDC,所以MN平面PDC.(2)解因为PA平面ABCD,BD平面ABCD,所以BDPA,又BDAC,PAACA,PA,AC平面PAC,所以BD平面PAC.由(1)知MNPD,所以直线MN与平面PAC所成的角即直线PD与平面PAC所成的角,故DPM即为所求的角在RtPAD中,PD2,所以sinDPM,所以直线MN与平面PAC所成角的正弦值为.13如图,

    27、在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H.那么,在这个空间图形中必有()AAG平面EFHBAH平面EFHCHF平面AEFDHG平面AEF答案B解析根据折叠前、后AHHE,AHHF不变,AH平面EFH,B正确;过A只有一条直线与平面EFH垂直,A不正确;AGEF,EFGH,AGGHG,AG,GH平面HAG,EF平面HAG,又EF平面AEF,平面HAG平面AEF,过点H作直线垂直于平面AEF,一定在平面HAG内,C不正确;由条件证不出HG平面AEF,D不正确故选B.14(2018全国)

    28、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.答案A解析如图所示,在正方体ABCDA1B1C1D1中,平面AB1D1与棱A1A,A1B1,A1D1所成的角都相等,又正方体的其余棱都分别与A1A,A1B1,A1D1平行,故正方体ABCDA1B1C1D1的每条棱所在直线与平面AB1D1所成的角都相等取棱AB,BB1,B1C1,C1D1,DD1,AD的中点E,F,G,H,M,N,则正六边形EFGHMN所在平面与平面AB1D1平行且面积最大,此截面面积为S正六边形EFGHMN6sin60.故选A.15.如图,在直角梯形ABCD中,BCD

    29、C,AEDC,且E为CD的中点,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是_(写出所有正确说法的序号)不论D折至何位置(不在平面ABC内),都有MN平面DEC;不论D折至何位置(不在平面ABC内),都有MNAE;不论D折至何位置(不在平面ABC内),都有MNAB;在折起过程中,一定不会有ECAD.答案解析由已知,在未折叠的原梯形中,易知四边形ABCE为矩形,所以ABEC,所以ABDE,又ABDE,所以四边形ABED为平行四边形,所以BEAD,折叠后如图所示过点M作MPDE,交AE于点P,连接NP.因为M,N分别是AD,BE的中点,所以点P为AE的中点,故NPEC

    30、.又MPNPP,DECEE,所以平面MNP平面DEC,故MN平面DEC,正确;由已知,AEED,AEEC,所以AEMP,AENP,又MPNPP,所以AE平面MNP,又MN平面MNP,所以MNAE,正确;假设MNAB,则MN与AB确定平面MNBA,从而BE平面MNBA,AD平面MNBA,与BE和AD是异面直线矛盾,错误;当ECED时,ECAD.因为ECEA,ECED,EAEDE,所以EC平面AED,AD平面AED,所以ECAD,不正确16.在如图所示的五面体ABCDEF中,四边形ABCD为菱形,且DAB60,EAEDAB2EF2,EFAB,M为BC的中点(1)求证:FM平面BDE;(2)若平面A

    31、DE平面ABCD,求点F到平面BDE的距离(1)证明取BD的中点O,连接OM,OE,因为O,M分别为BD,BC的中点,所以OMCD,且OMCD.因为四边形ABCD为菱形,所以CDAB,又EFAB,所以CDEF,又ABCD2EF,所以EFCD,所以OMEF,且OMEF,所以四边形OMFE为平行四边形,所以MFOE.又OE平面BDE,MF平面BDE,所以MF平面BDE.(2)解由(1)得FM平面BDE,所以点F到平面BDE的距离等于点M到平面BDE的距离取AD的中点H,连接EH,BH,因为EAED,四边形ABCD为菱形,且DAB60,所以EHAD,BHAD.因为平面ADE平面ABCD,平面ADE平面ABCDAD,EH平面ADE,所以EH平面ABCD,所以EHBH,易得EHBH,所以BE,所以SBDE.设点F到平面BDE的距离为h,连接DM,则SBDMSBCD4,连接EM,由V三棱锥EBDMV三棱锥MBDE,得h,解得h,即点F到平面BDE的距离为.21


    注意事项

    本文(鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.4直线平面垂直的判定与性质教案含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开