欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教B版高中数学必修二《第一章 立体几何初步》单元检测卷(含答案)

    • 资源ID:113711       资源大小:503.56KB        全文页数:14页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教B版高中数学必修二《第一章 立体几何初步》单元检测卷(含答案)

    1、章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.观察图中四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱答案C解析结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.2.如图,OAB是水平放置的OAB的直观图,则OAB的面积为()A.6B.3C.6D.12答案D解析由斜二测画法规则可知,OAB为直角三角形,且两直角边长分别为4和6,故面积为12.3.设m,n是两条不同的直线,是两个不同的平面()A.若m,n,则mnB.若m,m,则C.若mn,m,则nD.若m,则m答案C解析A

    2、项,当m,n时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m,m时,可能平行也可能相交,故错误;C项,当mn,m时,n,故正确;D项,当m,时,m可能与平行,可能在内,也可能与相交,故错误.故选C.4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10答案D解析由三视图知可把三棱锥放在一个长方体内部,即三棱锥A1BCD,VA1BCD35410,故选D.5.设l为直线,是两个不同的平面.下列命题中正确的是()A.若l,l,则B.若l,l,则C.若l,l,则D.若,l,则l答案B解析选项A,若l,l,则和可能平行也可能相交,故错误;选项B,若l,l,

    3、则,故正确;选项C,若l,l,则,故C错误;选项D,若,l,则l与的位置关系有三种可能:l,l,l,故错误.故选B.6.如图,三棱柱ABC-A1B1C1中,侧棱AA1底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC平面ABB1A1C.AE,B1C1为异面直线,且AEB1C1D.A1C1平面AB1E答案C解析由已知ACAB,E为BC中点,故AEBC,又BCB1C1,AEB1C1,C正确.7.已知m,n为异面直线,m平面,n平面.直线l满足lm,ln,l,l,则()A.且lB.且lC.与相交,且交线垂直于lD.与相交,且交

    4、线平行于l答案D解析根据所给的已知条件作图,如图所示.由图可知与相交,且交线平行于l,故选D.9.一个多面体的三视图如图所示,则该多面体的表面积为()A.21B.18C.21D.18答案A解析由几何体的三视图可知,该几何体的直观图如图所示.因此该几何体的表面积为6(4)2()221.故选A.10.如图,在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,将ABD沿BD折起,使平面ABD平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是()A.平面ABD平面ABCB.平面ADC平面BDCC.平面ABC平面BDCD.平面ADC平面ABC答案D解析如图,在平面图形中C

    5、DBD,折起后仍然满足CDBD,由于平面ABD平面BCD,故CD平面ABD,CDAB.又ABAD,故AB平面ADC,又AB平面ABC,所以平面ADC平面ABC.12.已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC2,则此棱锥的体积为()A.B.C.D.答案A解析利用三棱锥的体积变换求解.由于三棱锥S-ABC与三棱锥O-ABC底面都是ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,SABCAB2,高OD,VS-A

    6、BC2VO-ABC2.二、填空题(本大题共4小题,每小题5分,共20分)13.设平面平面,A、C,B、D,直线AB与CD交于点S,且点S位于平面,之间,AS8,BS6,CS12,则SD_.答案9解析由面面平行的性质得ACBD,解得SD9.14.如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱AA1和AB上的点,若B1MN是直角,则C1MN等于_.答案90解析B1C1平面A1ABB1,MN平面A1ABB1,B1C1MN,又B1MN为直角.B1MMN,而B1MB1C1B1.MN平面MB1C1又MC1平面MB1C1,MNMC1,C1MN90.15.如图,在圆柱O1O2内有一个球O,该球与

    7、圆柱的上、下面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_.答案解析设球半径为R,则圆柱底面圆半径为R,母线长为2R,又V1R22R2R3,V2R3,所以.16.下列四个命题:若ab,a,则b;若a,b,则ab;若a,则a平行于内所有的直线;若a,ab,b,则b.其中正确命题的序号是_.答案解析中b可能在内;a与b可能异面;a可能与内的直线异面.三、解答题(本大题共6小题,共70分)17. (本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC9,BC12,AB15,AA112,点D是AB的中点.(1)求证:ACB1C;(2)求证:AC1平面CDB

    8、1.证明(1)C1C平面ABC,C1CAC.AC9,BC12,AB15,AC2BC2AB2,ACBC.又BCC1CC,AC平面BCC1B1,而B1C平面BCC1B1,ACB1C.(2)连接BC1交B1C于O点,连接OD.如图,O,D分别为BC1,AB的中点,ODAC1.又OD平面CDB1,AC1平面CDB1.AC1平面CDB1.18.(本小题满分12分)在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1.求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC.证明(1)在平行六面体ABCDA1B1C1D1中,ABA1B1.因为AB平面A1B1C,A1B1平面A1B1

    9、C,所以AB平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1AB,所以四边形ABB1A1为菱形,因此AB1A1B.又因为AB1B1C1,BCB1C1,所以AB1BC.又因为A1BBCB,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC.19. (本小题满分12分)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E平面ABCD.(1)证明:A1O平面B1CD1;(2)设

    10、M是OD的中点,证明:平面A1EM平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCDA1B1C1D1是四棱柱,所以A1O1OC,A1O1OC,因此四边形A1OCO1为平行四边形,所以A1OO1C,又O1C平面B1CD1,A1O平面B1CD1,所以A1O平面B1CD1.(2)因为ACBD,E,M分别为AD和OD的中点,所以EMBD,又A1E平面ABCD,BD平面ABCD,所以A1EBD,因为B1D1BD,所以EMB1D1,A1EB1D1,又A1E,EM平面A1EM,A1EEME,所以B1D1平面A1EM,又B1D1平面B1CD1,所以平面A1EM平面B1CD1.2

    11、0.(本小题满分12分)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD平面BMC;(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由.(1)证明由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)解当P为AM的中点时,MC平面PBD.证明如下:如图,连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MCOP.

    12、MC平面PBD,OP平面PBD,所以MC平面PBD.21. (本小题满分12分)如图,在三棱锥PABC中,PAAB,PABC,ABBC,PAABBC2,D为线段AC的中点,E为线段PC上一点. (1)求证:PABD;(2)求证:平面BDE平面PAC;(3)当PA平面BDE时,求三棱锥EBCD的体积.(1)证明PAAB,PABC,AB平面ABC,BC平面ABC,且ABBCB,PA平面ABC,又BD平面ABC,PABD.(2)证明ABBC,D是AC的中点,BDAC.由(1)知PA平面ABC,PA平面PAC,平面PAC平面ABC.平面PAC平面ABCAC,BD平面ABC,BDAC,BD平面PAC.B

    13、D平面BDE,平面BDE平面PAC,(3)解PA平面BDE,又平面BDE平面PACDE,PA平面PAC,PADE.由(1)知PA平面ABC,DE平面ABC.D是AC的中点,E为PC的中点,DEPA1.D是AC的中点,SBCDSABC221,VEBCDSBCDDE11.22. (本小题满分12分)如图(1),在RtABC中,C90,D,E分别为AC,AB的中点,点F为线段CD上的一点,将ADE沿DE折起到A1DE的位置,使A1FCD,如图(2).(1)求证:DE平面A1CB;(2)求证:A1FBE;(3)线段A1B上是否存在点Q,使A1C平面DEQ?说明理由.(1)证明D,E分别为AC,AB的中点,DEBC.又DE平面A1CB,DE平面A1CB.(2)证明由已知得ACBC且DEBC,DEAC.DEA1D,DECD.DE平面A1DC.而A1F平面A1DC,DEA1F.又A1FCD,DECDD,A1F平面BCDE,A1FBE.(3)解线段A1B上存在点Q,使A1C平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQBC.又DEBC,DEPQ.平面DEQ即为平面DEP.由(2)知,DE平面A1DC,DEA1C.又P是等腰三角形DA1C底边A1C的中点,A1CDP.又DEDP=D,A1C平面DEP.从而A1C平面DEQ.故线段A1B上存在点Q(中点),使得A1C平面DEQ.


    注意事项

    本文(人教B版高中数学必修二《第一章 立体几何初步》单元检测卷(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开