欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    微专题突破六:平面向量中的三角形“四心”问题 学案(含答案)

    • 资源ID:114499       资源大小:55.16KB        全文页数:5页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微专题突破六:平面向量中的三角形“四心”问题 学案(含答案)

    1、微专题突破六平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中点距离之比为21.在向量表达形式中,设点G是ABC所在平面内的一点,则当点G是ABC的重心时,有0或()(其中P为平面上任意一点).反之,若0,则点G是ABC的重心.在向量的坐标表示中,若G,A,B,C分别是三角形的重心和三个顶点,且坐标分别为G(x,y),A(x1,y1),B(x2

    2、,y2),C(x3,y3),则有x,y.2.垂心三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H是ABC的垂心,则或222222.反之,若,则H是ABC的垂心.向量(0)所在的直线过ABC的垂心(该向量在BC边上的高AD所在的直线上).3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I是ABC的内心,则有|0.反之,若|0,则点I是ABC的内心.向量(0)所在的直线过ABC的内心(该向量在BAC的平分线所在的直线上).4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形

    3、的三个顶点的距离相等.在向量表达形式中,若点O是ABC的外心,则()()()0或|.反之,若|,则点O是ABC的外心.例1已知ABC内一点O满足关系230,试求SBOCSCOASAOB的值.解如图,延长OB至B1,使BB1OB,延长OC至C1,使CC12OC,连接AB1,AC1,B1C1.则2,3.由条件,得0,点O是AB1C1的重心.从而S,其中S表示AB1C1的面积.SCOAS,SAOBS,SBOCS.于是SBOCSCOASAOB123.点评本题条件230与三角形的重心性质0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面

    4、积三等分,从而可求三部分的面积比.引申推广已知ABC内一点O满足关系1230,则SBOCSCOASAOB123.例2已知点O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足,0,),则点P的轨迹一定通过ABC的()A.外心 B.内心C.重心 D.垂心答案B解析为方向上的单位向量,为方向上的单位向量,则的方向为BAC的角平分线的方向.又0,),所以的方向与的方向相同.而,所以点P在上移动,所以点P的轨迹一定通过ABC的内心.点评根据向量加法的平行四边形法则可知的方向为BAC的平分线的方向,体现了向量的“几何”特性以及其在解题中的应用.例3O是ABC所在平面内的一定点,动点P满足,(0

    5、,),则直线AP一定通过ABC的()A.外心 B.内心C.重心 D.垂心答案D解析由,得,所以(|)0,所以与垂直,即直线AP一定通过ABC的垂心,故选D.点评注意到右边表达式分母部分“cos B”,“cos C”,联想到向量数量积的运算,通过两边同时点乘同一向量,再利用数量积运算化简,从而使问题得解.例4已知O是平面内一定点,A,B,C是平面内不共线的三点,动点P满足(),0,),则点P的轨迹一定经过ABC的()A.外心 B.垂心C.内心 D.重心答案D解析设,则可知四边形BACD是平行四边形.又,得,则A,P,D三点共线.又D在边BC的中线所在的直线上,0,),于是点P的轨迹一定经过ABC的重心,故选D.点评根据向量加法的几何意义知和的和向量所在直线平分BC,即直线AD为BC边中线所在直线,从而本题答案也就显而易见了.


    注意事项

    本文(微专题突破六:平面向量中的三角形“四心”问题 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开