欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教B版高中数学必修四《3.1.1 两角和与差的余弦》学案(含答案)

    • 资源ID:114513       资源大小:147.17KB        全文页数:7页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教B版高中数学必修四《3.1.1 两角和与差的余弦》学案(含答案)

    1、3.1和角公式3.1.1两角和与差的余弦学习目标1.了解两角差的余弦公式的推导过程.2.理解用向量法导出公式的主要步骤.3.熟记两角和与差的余弦公式的形式及符号特征,并能利用该公式进行求值、计算.知识点两角和与差的余弦公式两角和与差的余弦公式C:cos()cos cos sin sin .C:cos()cos cos sin sin .1.存在角,使得cos()cos cos .()提示如,cos()coscos,cos cos cos cos ,满足cos()cos cos .2.任意角,cos()cos cos sin sin .()提示由两角差的余弦公式可知不正确.3.任意角,cos()

    2、cos cos sin sin .()题型一利用两角和与差的余弦公式求值例1计算:(1)cos(15);(2)cos 15cos 105sin 15sin 105.解(1)方法一原式cos(3045)cos 30cos 45sin 30sin 45.方法二原式cos 15cos(4530)cos 45cos 30sin 45sin 30.(2)原式cos(15105)cos 120.反思感悟利用两角和与差的余弦公式求值的一般思路:(1)把非特殊角转化为特殊角的差或和,正用公式直接求解.(2)在转化过程中,充分利用诱导公式,构造两角差或和的余弦公式的右边形式,然后逆用公式求值.跟踪训练1求下列各

    3、式的值.(1)cos 105;(2)cos 46cos 16sin 46sin 16.解(1)原式cos(15045)cos 150cos 45sin 150sin 45.(2)原式cos(4616)cos 30.题型二给值求值例2已知,均为锐角,sin ,cos(),求cos 的值.解因为,sin ,所以0.所以.又因为cos(),所以.所以cos ,sin().所以cos cos()cos cos()sin sin().反思感悟三角恒等变换是三角运算的灵魂与核心,它包括角的变换、函数名称的变换、三角函数式结构的变换.其中角的变换是最基本的变换.常见的有(),(),(2)(),()(),()

    4、()等.跟踪训练2已知cos ,cos(),且,求cos 的值.解,(0,).又cos ,cos(),sin ,sin().又(),cos cos()cos()cos sin()sin .题型三给值求角例3已知cos ,cos(),且0,求的值.解由cos ,0,得sin .由0,得0.又cos(),sin() .由(),得cos cos()cos cos()sin sin(),即cos .又0,.反思感悟求解给值求角问题的一般步骤:(1)求角的某一个三角函数值.(2)确定角的范围.(3)根据角的范围写出所求的角.跟踪训练3已知cos(),cos(),且,求角的值.解由,且cos(),得sin

    5、().由,且cos(),得sin().cos 2cos()()cos()cos()sin()sin()1.又,2.2,则.两角差的余弦公式的应用典例如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)如果A,B两点的纵坐标分别为,求cos 和sin ;(2)在(1)的条件下,求cos()的值.考点两角差的余弦公式题点两角差的余弦公式的综合应用解(1)OA1,OB1,且点A,B的纵坐标分别为,sin ,sin ,又为锐角,cos .(2)为钝角,由(1)知cos ,cos()cos cos sin sin .素养评析从已给信息得出角,的正弦、余弦值是解决本题的关键,体现了

    6、从图形关系中抽象出数学概念的思想,这正是数学核心素养数学抽象的具体表现.1.计算cos cos cos sin 的值是()A.0 B. C. D.答案C解析cos cos cos sin cos cos sin sin coscos .2.若a(cos 60,sin 60),b(cos 15,sin 15),则ab等于()A. B. C. D.答案A解析abcos 60cos 15sin 60sin 15cos(6015)cos 45.3.设,若sin ,则cos等于()A. B. C. D.答案B解析,sin ,cos ,coscos sin .4.已知sin sin ,cos cos ,求cos()的值.解(sin sin )22,(cos cos )22,以上两式展开,两边分别相加,得22cos()1,cos().5.已知sin ,sin ,且180270,90180,求cos()的值.解因为sin ,180270,所以cos .因为sin ,90180,所以cos .所以cos()cos cos sin sin .1.公式C与C都是三角恒等式,既可正用,也可逆用.要注意公式的结构特征.如:cos cos sin sin cos().2.要注意充分利用已知角与未知角之间的联系,通过恰当的角的变换,创造出应用公式的条件进行求解.3.注意角的拆分技巧的积累,如:()()等.


    注意事项

    本文(人教B版高中数学必修四《3.1.1 两角和与差的余弦》学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开