欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018-2019学年内蒙古鄂尔多斯一中高二(下)期末数学试卷(理科)含详细解答

    • 资源ID:114774       资源大小:277.50KB        全文页数:21页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018-2019学年内蒙古鄂尔多斯一中高二(下)期末数学试卷(理科)含详细解答

    1、2018-2019学年内蒙古鄂尔多斯一中高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)“所有9的倍数都是3的倍数某数是9的倍数,故该数为3的倍数,”上述推理()A完全正确B推理形式不正确C错误,因为大小前提不一致D错误,因为大前提错误2(5分)i是虚数单位,复数z满足(1+i)z1+3i,则z()A1+2iB2+iC12iD2i3(5分)已知双曲线1(a0,b0)的离心率为,则此双曲线的渐近线方程为()Ay2xBCD4(5分)(2x1)6展开式中x2的系数为()A15B60C120D2405(5分)

    2、袋中装有6个红球和4个白球,不放回地一次摸出一个,在第一次摸出红球的条件下,第二次摸到红球的概率为()ABCD6(5分)如图所示,曲线yx2和曲线y围成一个叶形图(阴影部分),其面积是()A1BCD7(5分)已知随机变量XN(6,1),且P(5X7)a,P(4X8)b,则P(4X7)()ABCD8(5分)若点P在抛物线yx2上,点Q(0,3),则|PQ|的最小值是()ABC3D9(5分)如图,过抛物线y24x焦点的直线依次交抛物线与圆(x1)2+y21于A,B,C,D,则|()A4B2C1D10(5分)高三(一)班学要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞

    3、蹈节目不连排,则不同排法的种数是()A1800B3600C4320D504011(5分)函数f(x)sin(ln)的图象大致为()ABCD12(5分)若对任意的x0,不等式x22mlnx1(m0)恒成立,则m的取值范围是()A1B1,+)C2,+)De,+)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上13(5分)设随机变量XB(n,),且D(X),则事件“X2”的概率为   14(5分)设函数f(x)x3+(a1)x2+ax若f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为   15(5分)已知等差数列an满足a44,且a1,

    4、a2,a4成等比数列,则a3的所有值为   16(5分)下列命题中已知点A(3,0),B(3,0),动点P满足|PA|2|PB|,则点P的轨迹是一个圆;已知M(2,0),N(2,0),|PM|PN|3,则动点P的轨迹是双曲线右边一支;两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;在平面直角坐标系内,到点(1,1)和直线x+2y3的距离相等的点的轨迹是抛物线;设定点F1(0,2),F2(0,2),动点P满足条件|PF1|+|PF2|a+(a0),则点P的轨迹是椭圆正确的命题是   三、解答题:解答应写出文字说明,证明过程或演算步骤.17(12分)在ABC中,角

    5、A,B,C的对边分别为a,b,c,已知bcos2+acos2c()求证:a,c,b成等差数列;()若C,ABC的面积为2,求c18(12分)已知公差不为零的等差数列an满足S535,且a2,a7,a22成等比数列()求数列an的通项公式;()若bn,且数列bn的前n项和为Tn,求证:Tn19(12分)“微信运动”是手机APP推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:运动达人参与者合计男教师

    6、602080女教师402060合计10040140(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?(2)从具有“运动达人号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为X,写出X的分布列并求出数学期望E(X)参考公式:K2,其中na+b+c+d参考数据:P(K2k)0.0500.0100.001k3.8416.63510.82820(12分)已知椭圆C满足:过椭圆C的右焦点F(,0)且经过短轴端点的直线的倾斜角为()求椭

    7、圆C的方程;()设O为坐标原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值21(12分)已知函数,其中aR()求f(x)的单调区间;()若在1,e上存在x0,使得f(x0)0成立,求a的取值范围选做题:请考生从第22、23两题中任选一题作答注意:只能做所选定的题目如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,圆C的参数方程为(为参数)(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(2,0),B(0,2),圆C上任意一点M(x,y),求ABM面积的最大值选修4-5:不等式选讲

    8、23设f(x)|x1|x+3|(1)解不等式f(x)2;(2)若不等式f(x)kx+1在x3,1上恒成立,求实数k的取值范围2018-2019学年内蒙古鄂尔多斯一中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)“所有9的倍数都是3的倍数某数是9的倍数,故该数为3的倍数,”上述推理()A完全正确B推理形式不正确C错误,因为大小前提不一致D错误,因为大前提错误【分析】要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论【解答】解:所有6

    9、的倍数都是3的倍数,某数是6的倍数,则该数是3的倍数,大前提:所有6的倍数都是3的倍数是正确的,小前提:某数是6的倍数是正确的,结论:该数是3的倍数是正确的,这个推理是正确的,故选:A【点评】本题是一个简单的演绎推理,这种问题不用进行运算,只要根据所学的知识点,判断这种说法是否正确,是一个基础题2(5分)i是虚数单位,复数z满足(1+i)z1+3i,则z()A1+2iB2+iC12iD2i【分析】把已知等式变形,利用复数代数形式的乘除运算化简得答案【解答】解:由(1+i)z1+3i,得z,故选:B【点评】本题考查复数代数形式的乘除运算,是基础题3(5分)已知双曲线1(a0,b0)的离心率为,则

    10、此双曲线的渐近线方程为()Ay2xBCD【分析】由离心率的值,可设,则得,可得的值,进而得到渐近线方程【解答】解:,故可设,则得,渐近线方程为 ,故选:C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出的值是解题的关键4(5分)(2x1)6展开式中x2的系数为()A15B60C120D240【分析】可写出通项公式,令x的系数为2,求此项的系数即可【解答】解:(2x1)6(1+2x)6T3C62(1)4(2x)260x2故选:B【点评】本题考查二项式定理的通项公式的应用,属基本题5(5分)袋中装有6个红球和4个白球,不放回地一次摸出一个,在第一次摸出红球的条件下,第二次摸到红球

    11、的概率为()ABCD【分析】第一次摸到红球,第二次摸球时袋中有5个红球和4个白球,由此能求出第二次摸到红球的概率【解答】解:袋中装有6个红球和4个白球,不放回地一次摸出一个,第一次摸到红球,第二次摸球时袋中有5个红球和4个白球,第二次摸到红球的概率为故选:D【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用6(5分)如图所示,曲线yx2和曲线y围成一个叶形图(阴影部分),其面积是()A1BCD【分析】联立由曲线yx2和曲线y两个解析式求出交点坐标,然后在x(0,1)区间上利用定积分的方法求出围成的面积即可【解答】解:联立得,解得 或,设曲线与直线围成的

    12、面积为S,则S01(x2)dx故选:C【点评】考查学生求函数交点求法的能力,利用定积分求图形面积的能力7(5分)已知随机变量XN(6,1),且P(5X7)a,P(4X8)b,则P(4X7)()ABCD【分析】根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(4X7)【解答】解:随机变量XN(6,1),正态曲线的对称轴是x6,P(1X5)0.6826,P(5X7)a,P(4X8)b,P(7X8),P(4X7)b故选:B【点评】本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题8(5分)若点P在抛物线yx2上,点Q(0,3),则|PQ|的最小值

    13、是()ABC3D【分析】由已知条件,设P(x,y),利用两点间距离公式,求出|PQ|,由此利用配方法能求出|PQ|的最小值【解答】解:设P(x,y),Q(0,3),|PQ|,|PQ|的最小值是故选:B【点评】本题考查两点间距离公式,考查配方法的运用,考查学生的计算能力,比较基础9(5分)如图,过抛物线y24x焦点的直线依次交抛物线与圆(x1)2+y21于A,B,C,D,则|()A4B2C1D【分析】当直线过焦点F且垂直于x轴时,|AD|2p4,|BC|2r2,由抛物线与圆的对称性知:|AB|CD|1,所以|AB|CD|1【解答】解:由特殊化原则,当直线过焦点F且垂直于x轴时,|AD|2p4,|

    14、BC|2r2,由抛物线与圆的对称性知:|AB|CD|1,所以|AB|CD|1;故选:C【点评】本题以抛物线与圆为载体,考查圆的性质和应用,解题时恰当地选取取特殊值,能够有效地简化运算10(5分)高三(一)班学要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A1800B3600C4320D5040【分析】两个舞蹈节目不连排,可采用插空法其它五个节目的安排方式有A55种,5个节目有6个空,从6个空中选择两个安排舞蹈节目即可【解答】解:两个舞蹈节目不连排,则利用插空法进行,先排4个音乐节目和1个曲艺节目,共有,5个节目之间有6个空,从

    15、中选两个排舞蹈,有,则共有3600,故选:B【点评】本题考查有特殊要求的排列问题,属基本题安排不相连,用插孔法,相连用捆绑法11(5分)函数f(x)sin(ln)的图象大致为()ABCD【分析】利用函数的定义域以及函数的奇偶性,特殊值的位置,排除选项判断即可【解答】解:函数f(x)sin(ln)的定义域为:x1或x1,排除A,f(x)sin(ln)sin(ln)sin(ln)f(x),函数是奇函数排除C,x2时,函数f(x)sin(ln)sin(ln3)0,对应点在第四象限,排除D故选:B【点评】本题考查函数的奇偶性以及定义域特殊点的应用,函数的图象的判断,考查计算能力12(5分)若对任意的x

    16、0,不等式x22mlnx1(m0)恒成立,则m的取值范围是()A1B1,+)C2,+)De,+)【分析】利用导函数求解最值,即可求解m的取值范围【解答】解:令f(x)x22mlnx1,则f(x)2x当m0时,f(x)0,则f(x)在定义域内单调递增,不存在最值,对任意的x0,不等式不恒成立当m0时,f(x)0,可得x,当x(0,)时,f(x)0,当x(,+)时,f(x)0,可得当x取得最小值为mmlnm,即mmlnm1令g(m)mmlnm1(m0)则g(m)lnm,令g(m)lnm0,可得m1当0m1时,f(m)0,则f(m)在(0,1)单调递增;当m1时,f(m)0,则f(m)在(1,+)时

    17、,f(m)单调递减;当m1取得最大值为1要使mmlnm1成立,则m1故选:A【点评】本题考查了函数的恒成立问题,最值的求解利用了导函数的性质,属于难题二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上13(5分)设随机变量XB(n,),且D(X),则事件“X2”的概率为【分析】由随机变量XB(n,),且D(X),先求出n4,由此能求出事件“X2”的概率【解答】解:随机变量XB(n,),且D(X),解得n4,事件“X2”的概率为:P(X2)故答案为:【点评】本题考查概率的求法,考查二项分布的性质等基础知识,考查运算求解能力,是基础题14(5分)设函数f(x)x3+(a

    18、1)x2+ax若f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为yx【分析】由奇函数的定义可得f(x)+f(x)0,可得a1,求得f(x)的导数,可得切线的斜率,由点斜式方程可得所求切线方程【解答】解:函数f(x)x3+(a1)x2+ax若f(x)为奇函数,可得f(x)+f(x)x3+(a1)x2ax+x3+(a1)x2+ax0,即为2(a1)x20,由xR,可得a1,即有f(x)x3+x,导数为f(x)3x2+1,可得x0处切线的斜率为1,即有曲线yf(x)在点(0,0)处的切线方程为yx故答案为:yx【点评】本题考查函数的奇偶性的定义和导数的运用:求切线方程,考查方程思想和运

    19、算能力,属于基础题15(5分)已知等差数列an满足a44,且a1,a2,a4成等比数列,则a3的所有值为3或4【分析】利用等差数列以及等比数列的通项公式,结合已知条件求出首项与公差,然后求解即可【解答】解:因为a1,a2,a4成等比数列,所以,即,化简,得:d(da1)0,所以,或,解得:或,所以a3a44,或a3a1+2d3,所以,a3的所有值为3,4故答案为:3或4【点评】本题考查等差数列,等比数列的应用,通项公式的应用,考查计算能力16(5分)下列命题中已知点A(3,0),B(3,0),动点P满足|PA|2|PB|,则点P的轨迹是一个圆;已知M(2,0),N(2,0),|PM|PN|3,

    20、则动点P的轨迹是双曲线右边一支;两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;在平面直角坐标系内,到点(1,1)和直线x+2y3的距离相等的点的轨迹是抛物线;设定点F1(0,2),F2(0,2),动点P满足条件|PF1|+|PF2|a+(a0),则点P的轨迹是椭圆正确的命题是【分析】求出轨迹方程判断的正误;利用双曲线的定义判断的正误;线性相关的定义判断的正误;利用哦王孝的定义判断的正误;椭圆的定义判断的正误【解答】解:中|PA|,|PB|,根据|PA|2|PB|,化简得:(x5)2+y216,所以点P的轨迹是个圆;因为|PM|PN|3|MN|4,所以根据双曲线的定义,P点的轨迹

    21、是双曲线右支,正确;根据相关性定义,两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,正确;因为点在直线上,不符合抛物线定义,错误;因为a+4,且当a2时取等号,不符合椭圆的定义,错误综上正确的是故答案为:【点评】本题考查命题的直接的判断与应用,轨迹方程的求法,考查转化思想以及计算能力三、解答题:解答应写出文字说明,证明过程或演算步骤.17(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知bcos2+acos2c()求证:a,c,b成等差数列;()若C,ABC的面积为2,求c【分析】()利用正弦定理以及两角和与差的三角函数,三角形的内角和,化简求解即可()利用三角形的面

    22、积以及余弦定理化简求解即可【解答】解:()证明:由正弦定理得:即,sinB+sinA+sinBcosA+cosBsinA3sinC(2分)sinB+sinA+sin(A+B)3sinCsinB+sinA+sinC3sinC(4分)sinB+sinA2sinCa+b2c(5分)a,c,b成等差数列(6分)()ab8(8分)c2a2+b22abcosCa2+b2ab(a+b)23ab4c224(10分)c28得(12分)【点评】本题考查三角形的解法,两角和与差的三角函数妹子学到了与余弦定理,等差数列的应用,考查转化思想以及计算能力18(12分)已知公差不为零的等差数列an满足S535,且a2,a7

    23、,a22成等比数列()求数列an的通项公式;()若bn,且数列bn的前n项和为Tn,求证:Tn【分析】()首先利用已知条件和等比数列的性质建立方程组,进一步求出数列的首项和公差,进一步求出数列的通项公式()利用()的结论,进一步利用裂项相消法和放缩法求出结果【解答】解:()设等差数列an的公差为d(d0)由题意得,则,解得a13,d2,所以an3+2(n1)2n+1()证明:bn,所以,【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法和放缩法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型19(12分)“微信运动”是手机APP推出的多款健康运动软件中的一款,

    24、某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:运动达人参与者合计男教师602080女教师402060合计10040140(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?(2)从具有“运动达人号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为X,写出X的分

    25、布列并求出数学期望E(X)参考公式:K2,其中na+b+c+d参考数据:P(K2k)0.0500.0100.001k3.8416.63510.828【分析】(1)根据列联表数据得到k1.1673.841,从而不能在犯错误的概率不超过0.05的前提下认为获得“运动达人”称号与性别有关(2)根据分层抽样方法得选取的10人中,男教师有6人,女教师有4人,由题意得X的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X)【解答】解:(1)根据列联表数据得到:k1.1673.841,不能在犯错误的概率不超过0.05的前提下认为获得“运动达人”称号与性别有关(2)根据分层抽样方法

    26、得:男教师有(人),女教师有(人),选取的10人中,男教师有6人,女教师有4人,由题意得X的所有可能取值为0,1,2,3,P(X0),P(X1),P(X2),P(X3),X的分布列为:X 0 1 2 3 P E(X)【点评】本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法及应用,考查分层抽样、古典概率、排列组合等基础知识,是中档题20(12分)已知椭圆C满足:过椭圆C的右焦点F(,0)且经过短轴端点的直线的倾斜角为()求椭圆C的方程;()设O为坐标原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值【分析】()设椭圆方程为+1(ab0),运用直线的斜率

    27、公式,求出a,b,即可求椭圆C的方程;()先表示出线段AB长度,再利用基本不等式,求出最小值【解答】解:()设椭圆方程为+1(ab0),由题意可得c,设短轴的端点为(0,b),可得tan1,解得b,a2,椭圆方程为+1;()设A(t,2),B(x0,y0),x00,则OAOB,0,tx0+2y00,t,x02+2y024,|AB|2(x0t)2+(y02)2(x0+)2+(y02)2x02+y02+4x02+4+4(0x024),因为+4(0x024),当且仅当,即x024时等号成立,所以|AB|28线段AB长度的最小值为2【点评】本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算

    28、能力,属于中档题21(12分)已知函数,其中aR()求f(x)的单调区间;()若在1,e上存在x0,使得f(x0)0成立,求a的取值范围【分析】()先求出函数的单调区间,通过讨论a的范围,确定函数的单调性;()通过讨论a的范围,得到f(x)在1,e的单调性,求出1,e的最小值即可求出a的范围【解答】解:()当a0时,在x(0,+)上f'(x)0,f(x)在(0,+)上单调递增;当a0时,在x(0,a)上f'(x)0;在x(a,+)上f'(x)0;所以f(x)在(0,a)上单调递减,在(a,+)上单调递增综上所述,当a0时,f(x)的单调递增区间为(0,+),当a0时,f

    29、(x)的单调递减区间为(0,a),单调递增区间为(a,+)()若在1,e上存在x0,使得f(x0)0成立,则f(x)在1,e上的最小值小于0当a1,即a1时,由(1)可知f(x)在1,e上单调递增,f(x)在1,e上的最小值为f(1),由f(1)1a0,可得a1,当ae,即ae时,由(1)可知f(x)在1,e上单调递减,f(x)在1,e上的最小值为f(e),由,可得当1ae,即ea1时,由(1)可知f(x)在(1,a)上单调递减,在(a,e)上单调递增,f(x)在1,e上的最小值为f(a)(a+1)ln(a)a+1,因为0ln(a)1,所以(a+1)(a+1)ln(a)0,即(a+1)ln(a

    30、)a+12,即f(a)2,不满足题意,舍去综上所述,实数a的取值范围为【点评】本题考查了函数的单调性、最值问题,考查导数的应用,分类讨论思想,是一道中档题选做题:请考生从第22、23两题中任选一题作答注意:只能做所选定的题目如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,圆C的参数方程为(为参数)(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(2,0),B(0,2),圆C上任意一点M(x,y),求ABM面积的最大值【分析】(1)圆C的参数方程为(为参数)利用平方关系可得:(x3)2+(y+4)24展开可

    31、得:x2+y26x+8y+210把xcos,ysin代入可得圆C的极坐标方程(2)直线AB的方程为:1,即x+y20圆心C(3,4)到直线AB的距离d2,可得直线AB与AB相离可得圆C上任意一点M(x,y)直线AB的距离的最大值,可得ABM面积的最大值|AB|(d+r)【解答】解:(1)圆C的参数方程为(为参数)利用平方关系可得:(x3)2+(y+4)24展开可得:x2+y26x+8y+210把xcos,ysin代入可得圆C的极坐标方程:26cos+8sin+210(2)直线AB的方程为:1,即x+y20圆心C(3,4)到直线AB的距离d2,可得直线AB与AB相离圆C上任意一点M(x,y)直线

    32、AB的距离的最大值d+r+2,ABM面积的最大值|AB|(d+r)(+2)3+2【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、两点之间的距离公式,考查了推理能力与计算能力,属于中档题选修4-5:不等式选讲23设f(x)|x1|x+3|(1)解不等式f(x)2;(2)若不等式f(x)kx+1在x3,1上恒成立,求实数k的取值范围【分析】(1)去掉绝对值符号,将函数化为分段函数的形式,解不等式f(x)2即可;(2)由于不等式f(x)kx+1在x3,1上恒成立,可得2x2kx+1在x3,1上恒成立,分离参数求最小值即可求实数k的取值范围【解答】解:(1)f(x)|x1|x+3|,x3时,f(x)x+1+x+342,x3;3x1时,f(x)x+1x32x22,x2,3x2;x1时,f(x)x1x342,不成立综上,不等式的解集为x|x2;(2)x3,1时,f(x)x+1x32x2,由于不等式f(x)kx+1在x3,1上恒成立,2x2kx+1在x3,1上恒成立,k2g(x)2在x3,1上为增函数,1g(x)1k1【点评】熟练掌握分类讨论方法解含绝对值符号的不等式、恒成立问题等价转化方法等是解题的关键


    注意事项

    本文(2018-2019学年内蒙古鄂尔多斯一中高二(下)期末数学试卷(理科)含详细解答)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开