欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    §1 同角三角函数的基本关系 学案(含答案)

    • 资源ID:115772       资源大小:199.64KB        全文页数:10页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    §1 同角三角函数的基本关系 学案(含答案)

    1、1同角三角函数的基本关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识点同角三角函数的基本关系式1同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan .2同角三角函数基本关系式的变形(1)sin2cos21的变形公式sin21cos2;cos21sin2.(2)tan 的变形公式sin cos_tan_;cos .1sin2cos21.()提示在同角三角函数的基本关系式中要注意是“同角”才成立,即sin2cos21.2sin2cos21.()

    2、提示在sin2cos21中,令可得sin2cos21.3对任意的角,都有tan 成立()提示当k,kZ时就不成立4若cos 0,则sin 1.()题型一利用同角三角函数的关系式求值命题角度1已知角的某一三角函数值及所在象限,求角的其余三角函数值例1(1)若sin ,且为第四象限角,则tan 的值为()A. B C. D答案D解析sin ,且为第四象限角,cos ,tan ,故选D.(2)已知sin cos ,(0,),则tan _.考点运用基本关系式求三角函数值题点运用基本关系式求三角函数值答案解析sin cos ,(sin cos )2,即2sin cos 0,cos 0,故sin cos

    3、,可得sin ,cos ,tan .反思感悟(1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin ,cos ,tan 三个值之间,知道其中一个可以求其余两个解题时要注意角的象限,从而判断三角函数值的正负(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin cos )212sin cos 的等价转化,找到解决问题的突破口跟踪训练1已知tan ,且是第三象限角,求sin ,cos 的值解由tan ,得sin cos .又sin2cos21,由得cos2cos21,即cos2.又是第三

    4、象限角,cos ,sin cos .命题角度2已知角的某一三角函数值,未给出所在象限,求角的其余三角函数值例2已知cos ,求sin ,tan 的值解cos 0,且cos 1,是第二或第三象限角(1)当是第二象限角时,则sin ,tan .(2)当是第三象限角时,则sin ,tan .反思感悟利用同角三角函数关系式求值时,若没有给出角是第几象限角,则应分类讨论,先由已知三角函数的值推出的终边可能在的象限,再分类求解跟踪训练2已知cos ,求sin ,tan 的值解cos 0,是第二或第三象限角(1)若是第二象限角,则sin ,tan .(2)若是第三象限角,则sin ,tan .题型二齐次式求

    5、值问题例3已知tan 2,求下列代数式的值(1);(2)sin2sin cos cos2.考点运用基本关系式化简和证明题点运用基本关系式化简、求值解(1)原式.(2)原式.反思感悟(1)关于sin ,cos 的齐次式,可以通过分子、分母同除以cos 或cos2转化为关于tan 的式子后再求值(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1sin2cos2代换后,再同除以cos2,构造出关于tan 的代数式跟踪训练3已知2,计算下列各式的值(1);(2)sin22sin cos 1.考点运用基本关系式化简和证明题点运用基本关系式化简、求三角函数值解由2,化简,得sin 3

    6、cos ,所以tan 3.(1)原式.(2)原式111.题型三三角函数式的化简与证明例4(1)化简:sin2tan 2sin cos .考点运用基本关系式化简和证明题点运用基本关系式化简解原式sin2cos22sin cos .(2)求证:.考点运用基本关系式化简和证明题点运用基本关系式证明证明右边左边,原等式成立反思感悟(1)三角函数式的化简技巧化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2cos21,以降低函数次数,达到化简

    7、的目的(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:证明一边等于另一边,一般是由繁到简证明左、右两边等于同一个式子(左、右归一)比较法:即证左边右边0或1(右边0)证明与已知等式等价的另一个式子成立,从而推出原式成立跟踪训练4化简:.考点运用基本关系式化简和证明题点运用基本关系式化简解原式1.同角三角函数基本关系式求值典例设是第三象限角,问是否存在这样的实数m,使得sin ,cos 是关于x的方程8x26mx2m10的两个根?若存在,求出实数m;若不存在,说明理由考点运用基本关系式求三角函数值题点运用基本关系式求三角函数值解倘若存在这样的实数m满足条件,由题设得:

    8、36m232(2m1)0,是第三象限角,sin 0,cos 0,sin cos m0.又sin2cos21,(sin cos )22sin cos 1.把,代入上式得221,即9m28m200,解得m12,m2.m12不满足条件,舍去,m2不满足条件,舍去故这样的实数m不存在素养评析通过反设存在满足条件的m,列出所需限定条件根据同角三角函数基本关系式运算推理求出并验证相应的值,这正是数学核心素养逻辑推理的具体体现.1若sin ,且是第二象限角,则tan 的值等于()A B. C D答案A解析为第二象限角,sin ,cos ,tan .2已知sin cos ,则sin cos 等于()A. B

    9、C D.答案C解析由题得(sin cos )2,即sin2cos22sin cos ,又sin2cos21,12sin cos ,sin cos .故选C.3(2018江西上高第二中学高二期末)若为第三象限角,则的值为()A3 B3 C1 D1考点运用基本关系式化简和证明题点运用基本关系式化简答案B解析为第三象限角,cos 0,sin 0,是第一或第二象限角当为第一象限角时,cos ,tan ;当为第二象限角时,cos ,tan .1利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值2利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量

    10、少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值3在三角函数的变换求值中,已知sin cos ,sin cos ,sin cos 中的一个,可以利用方程思想,求出另外两个的值4在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法5在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.


    注意事项

    本文(§1 同角三角函数的基本关系 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开