欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    3.1 基本不等式 学案(含答案)

    • 资源ID:116630       资源大小:136.45KB        全文页数:7页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.1 基本不等式 学案(含答案)

    1、3基本不等式3.1基本不等式学习目标1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一基本不等式1.对于任意实数a,b,都有a2b22ab,当且仅当ab时,等号成立.特别地,如果a0,b0,我们用,分别代替a,b,可得ab2,当且仅当ab时,等号成立,通常我们把上式写成(a0,b0).2.算术平均数与几何平均数:设a,b为非负数,则称为a,b的算术平均数,称为a,b的几何平均数.3.基本不等式:(a0,b0).即两个非负数的几何平均数不大于它们的算术平均数,当且仅当a,b两数相等时两者相等.思考与2ab是等价的吗?答

    2、案不等价,前者的条件为a0,b0,后者的条件为a,bR.知识点二基本不等式及其常见推论(a0,b0).当a,b赋予不同的值时,可得以下推论:(1)ab2(a,bR);(2)2(a,b同号);(3)a2b2c2abbcca(a,b,cR).1.对于任意a,bR,a2b22ab,ab2均成立.()2.()3.若a0,b0,则ab恒成立.()4.22.()题型一常见推论的证明例1证明不等式a2b22ab(a,bR).证明a2b22ab(ab)20,a2b22ab,当且仅当ab时,等号成立.引申探究证明不等式2(a,bR).证明由例1,得a2b22ab,2(a2b2)a2b22ab,两边同除以4,即得

    3、2,当且仅当ab时,等号成立.反思感悟作差法与不等式性质是证明中常用的方法.跟踪训练1已知a,b,c为任意的实数,求证:a2b2c2abbcca.证明a2b22ab;b2c22bc;c2a22ca,2(a2b2c2)2(abbcca),即a2b2c2abbcca,当且仅当abc时,等号成立.题型二用基本不等式比较大小例2已知a,b(0,1),且ab,那么ab,2,a2b2,2ab中的最大者为_.答案ab解析a,b(0,1)且ab,ab2,a2b22ab,又aa2,bb2,aba2b2,最大者为ab.反思感悟应用基本不等式比较大小的两个技巧(1)放缩:通过不等式公式可以对式子放缩,从而达到证明不

    4、等式的目的,此种情况要注意不等式的不等号方向,和其适用条件,在实际应用中通常与不等式的性质一起设计题目.(2)“”成立的条件:当多次应用基本不等式时,一定要看各式子在用基本不等式时“”成立的条件是否一致.跟踪训练2设ab1,P,Q,Rlg ,则P,Q,R的大小关系是()A.RPQ B.PQRC.QPR D.PR0,lg lg(lg alg b),即RQ.综合,有PQ0,0,22,即2,当且仅当xy时,等号成立.(2)x,y都是正数,xy20,x2y220,x3y320.(xy)(x2y2)(x3y3)2228x3y3,即(xy)(x2y2)(x3y3)8x3y3,当且仅当xy时,等号成立.反思

    5、感悟利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项多次使用基本不等式时,要注意等号能否成立;累加法是不等式证明中的一种常用方法,证明不等式时注意使用;对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.跟踪训练3已知a,b,c都是正实数,求证:(ab)(bc)(ca)8abc.证明a,b,c都是正实数,ab20,bc20,ca20.(ab)(bc)(ca)2228abc.即(ab)(bc)(ca)8abc,当

    6、且仅当abc时,等号成立.条件不等式的证明典例(1)当x0,a0时,证明x2;(2)当x1时,证明9.证明(1)x0,a0,0.由基本不等式可知,x22.当且仅当x时,等号成立.(2)x15.x1,x10.x124,x159,即9.当且仅当x1时,等号成立.素养评析逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式.当我们对a,b赋予特殊值.如令ax,b,就有x2;再令中的xx1,a4,就有x12.基本不等式的应用关键就是给a,b赋予什么样的值.1.下列各式中,对任何实数x都成立的一个式子是()A.lg(x21)lg(2x) B.

    7、x212xC.1 D.x2答案C解析对于A,当x0时,无意义,故A不恒成立;对于B,当x1时,x212x,故B不成立;对于D,当x B.2,故.3.若0ab B.baC.ba D.ba答案C解析0aab,b.ba0,aba2,a.故ba.4.已知ab,b0,且ab2,则()A.ab B.abC.a2b22 D.a2b23答案C解析由ab2及a2b22ab,得2(a2b2)(ab)2,即a2b22.5.设a0,b0,给出下列不等式:a21a;4;(ab)4;a296a.其中恒成立的是_.(填序号)答案解析由于a21a20,故恒成立;由于a2,b2,4,当且仅当ab1时,等号成立,故恒成立;由于ab2,2,故(ab)4,当且仅当ab时,等号成立,故恒成立;当a3时,a296a,故不恒成立.综上,恒成立的是.1.两个不等式a2b22ab与都是带有等号的不等式,对于“当且仅当时,取等号”这句话的含义要有正确的理解.一方面:当ab时,;另一方面:当时,也有ab.2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.


    注意事项

    本文(3.1 基本不等式 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开