欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    人教版八年级上册14.2.2完全平方公式课件(共40张PPT)

    • 资源ID:117752       资源大小:860.75KB        全文页数:40页
    • 资源格式: PPTX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版八年级上册14.2.2完全平方公式课件(共40张PPT)

    1、14.2.2 完全平方公式,1.掌握完全平方公式的特征,能运用公式进行计算。 2.熟悉完全平方公式的常用变形,并且熟练应用变形解题。 3.掌握添括号法则,能正确添加括号。,学习目标,重点:完全平方公式的灵活应用应用. 难点:添括号法则,问题引入1,某学校对操场进行改造,原来操场是一个边长为a的正方形,现要扩建成一个边长比原来大b的正方形操场,那么能用两种不同的方法表示大正方形的面积吗?,完全平方和公式:,(x+y)2=x2+y2,问题引入1,某学校对操场进行改造,原来操场是一个边长为a的正方形,现要分割出一个边长比原来小b的正方形操场,那么能用两种不同的方法表示小正方形的面积吗?,完全平方差公

    2、式:,(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.,(乘法的)完全平方公式:,知识点一:完全平方公式,新知归纳,首平方,尾平方, 积的二倍放中央.,口答:(1)(p+1)2 (2)(m+2)2 (3)(P-1)2 (4)(m-2)2,归纳总结,公式特点:,4、公式中的字母a,b可以表示数,单项式和多项式.,1、积为二次三项式;,2、积中两项为两数的平方和;,3、另一项是两数积的2倍,且与乘式中间的符号相同.,首平方,尾平方, 积的二倍放中央.,练习.计算:(口答): (1) (4m+n)

    3、2 (2) (ab)2 (3)(yx)2 (4)(1x)2,=16m2+8mn+n2,=a22ab+b2,=y2+2xy+x2,=12x+x2,练习.计算:(口答): (5) (x+y)2 (6) (5a+b)2 (7)(3ab)2 (8)(m2n)2,=x2+2xy+y2,=25a2+10ab+b2,=9a26ab+b2,=m24mn+4n2,典例讲评,例1:运用完全平方公式计算: (1)(4m+n)2,例2:运用完全平方公式计算: (1)1022 (2)992,当堂训练,思考:(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? (a-b)2与a2-b2相等吗?为什么?

    4、,请尝试用多种方法求解上述例题。,当堂训练,拓展练习:,1. =_; 2.若 是一个完全平方公式, 则 _;,3.若 是一个完全平方公式, 则 _;,1,4.请添加一项_,使得 是完全平方式.,知识点二:完全平方公式的常用变形,(1)a2+b2=(a+b)2-2ab=(a-b)2+2ab,完全平方公式的常见变形,一题多变:已知a-b=13,ab=-12,求下列各式的值:,知识点二:完全平方公式的常用变形,完全平方公式的常见变形,(2)(a+b)2+(a-b)2=2a2+2b2,知识点二:完全平方公式的常用变形,完全平方公式的常见变形,(3)(a+b)2-(a-b)2=4ab,(4)ab= (a

    5、+b)2-(a2+b2)=,知识点二:完全平方公式的常用变形,完全平方公式的常见变形,知识点二:完全平方公式的常用变形,(1)a2+b2=(a+b)2-2ab=(a-b)2+2ab,完全平方公式的常见变形,知识点三:添括号法则,我们学过去括号法则,即,口诀:去括号,看符号; 是“+”号,不变号; 是“-”号,全变号.,运用乘法公式计算,有时要在式子中添括号.把上面等式左右两边交换位置就得到:,a + b + c=a + (b+c) abc=a(b+c),a + (b+c)=a + b + c a(b+c)=abc,知识点三:添括号法则,新知探究,填空: (1)a+(b-c) = ;(2)a-(

    6、b-c)= ; (3) a-(b+c)= ;(4)a-(-b-c)= . 根据上面四个等式填空: (1)a+b-c=a+( ) (2) a-b+c=a-( ) (3)a-b-c=a-( ) (4) a+b+c=a-( ) 观察这四个等式的左右两边,你发现了什么?,b-c,b-c,b+c,-b-c,a+b-c,a-b+c,a-b-c,a+b+c,新知归纳,知识点三:添括号法则,a + b c = a + ( b c),a + b c = a ( b +c ),符号均没有变化,符号均发生了变化,添上“+ ( )”, 括号里的各项都不变符号.,添上“ ( )”, 括号里的各项都改变符号.,口诀: 添

    7、括号,看符号; 添“+”号,不变号; 添“-”号,全变号.,新知归纳,知识点三:添括号法则,口诀:添括号,看符号; 添“+”号,不变号; 添“-”号,全变号.,添括号法则,添括号时,如果括号前面是“+”号,括到括号里的各项都不改变符号; 如果括号前面是“-”号,括到括号里的各项都要改变符号;,当堂训练,当堂训练,当堂训练,1.不改变代数式a2(2a+b+c)的值,把它括号前面的符号变为相反的符号,应为( ) A.a2+(-2a+b+c) B.a2+(-2a-b-c) C.a2+(-2a)+b+c D.a2-(-2a-b-c) 2.将多项式3x3-2x2+4x-5添括号后正确的是( ) A.3x

    8、3-(2x2+4x-5) B.(3x3+4x)-(2x2+5) C.(3x3-5)+(2x2-4x) D.2x2+(3x3+4x-5),B,B,当堂检测,3.在下列各式的括号内填上适当的项. (1)x3-3x2y+3xy2y3=x3+( ); (2)2x2+2xyy22( ); 4.下列添括号错误的是( ) A.a2b2b+aa2b2+(a-b) B.(a+b+c)(abc)a+(b+c)a-(b+c) C.ab+cd=(ad)+(cb) D.ab(b+a),x22xy+y2,-3x2y+3xy2y3,D,归纳总结,(1)在使用添括号法则时,要明确括到括号里的是哪些项,括号前面的符号是正号还是

    9、负号; (2)添括号与去括号是互逆的,符号的变化是一致的,在运用添括号法则时,可与去括号法则相比较.注意不要只改变括号内部分项的符号; (3)添括号比去括号容易出错,特别是当括号前添“”号时,添括号后是否正确,可利用去括号法则检验.,28,典例讲评,29,当堂训练,利用乘法公式计算: (1) (x+y+2)(x+y-2) ;(2) (a-b+c)(a+b-c).,30,当堂训练,达标检测,1.下列计算正确的是( ) A.(x+y)2=x2+y2 B.(x-y)2x2-2xy-y2 C.(x+2y)(x-2y)=x2-2y2 D.(-x+y)2=x2-2xy+y2 2下列各式,计算结果是 m2n

    10、2 -m+1的是( ) A .(mn- )2 B. ( mn+1)2 C. ( mn-1)2 D. ( mn-1)2 3若(x-y)2(x+y)2+( ),则括号中应填的是( ) A.-2xy B. 2xy C. -4xy D. 4xy,C,D,1 4,C,达标检测,4.将面积为a2的正方形边长均增加2,则正方形的面积增加了( ) A.4 B.2a+4 C.4a+4 D. 4a 5(易错题)计算:(3x-2y)2 , (-2t- )2 ,C,9x2-12xy+4y2,达标检测,运用完全平方公式计算: (1)1022 (2)992,解:(1) 1022 = (100+2)2= 1002+2100

    11、2+22 = 10000+400+4 = 10404 (2)992 = (100-1)2 =1002-21001+12 = 10000-200+1 = 9801,达标检测,1.若(y+a)2y2-6y+b,则a,b的值分别为( ) A.a=3,b=9 B.a= -3,b= -9 C.a=3,b= -9 D,a= -3,b=9 2.下列运算中,错误的有( ) (2x+y)24x2+y2; (a-3b)2a2-9b2 ; (-x-y)2x2-2xy+y2; (x- )2=x2-x+ A.1个 B.2个 C.3个 D.4个,D,C,达标检测,3.( -3)2=16a2- + . 4.已知2x+y1,

    12、则代数式(y+1)2-(y2-4x)的值为 . 5.如果y2-ky+9是完全平方式,则 k= . 6.利用完全平方公式计算: (1)2012 (2)1992,3,4a,24ab,9b2,达标检测,2,37,达标检测,1.应用平方差公式计算(x+2y1)(x2y+1),则下列变形正确的是( ) A.x(2y+1)2 B.x+(2y+1)2, C.x+(2y1)x(2y1) D.(x2y)+1(x2y)1,C,C,达标检测,2.下列式子中不能用乘法公式计算的是( ) A.(a+bc)(ab+c) B.(abc)2 C.(2a+b+2)(a2b2) D.(2a+3b1)(12a3b).,C,39,达标检测,3.计算(a+1)2(a-1)2的结果是( ) A.a4-1 B.a4+1 C.a4+2a2+1 D.a4-2a2+1 4.利用乘法公式计算: (1) (x+2y3)(x2y+3) ;(2) (a+b+c)2.,D,40,达标检测,5.利用乘法公式计算(变式练习): (1) (3a+b2)(3ab+2) ;(2) (a+bc)2; (3) (2x+3y1)(1+2x+3y),


    注意事项

    本文(人教版八年级上册14.2.2完全平方公式课件(共40张PPT))为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开