1、2018-2019学年贵州省铜仁市松桃县七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填入括号内)1(3分)2的相反数是()A2B2CD2(3分)下面计算正确的是()A329B5+38C(2)38D3a+2b5ab3(3分)下面几何图形中,是棱柱的是()ABCD4(3分)我国总人口数约为1370000000人,1370000000这个数用科学记数法表示正确的是()A137107B13.7108C1.37109D0.13710105(3分)某地教育系统为了解本地区30000名初中生的体
2、重情况,从中随机抽取了500名初中生的体重进行统计以下说法正确的是()A30000名初中生是总体B500名初中生是总体的一个样本C500名初中生是样本容量D每名初中生的体重是个体6(3分)下列方程的变形中,正确的是()A若x48,则x84B若2(2x+3)2,则4x+62C若x4,则x2D若,则去分母得23(x1)17(3分)有理数a,b在数轴上的位置如图所示,则下列结论中,不正确的是()Aa+b0Bab0CD|a|b|8(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,若AOC120,则BOD等于()A40B50C60D709(3分)如图,已知线段AB10cm,点C在线段AB上,
3、点M是线段AC的中点,点N是线段BC的中点,那么线段MN的长为()A6cmB5cmC4cmD不能确定10(3分)甲、乙两人在一条笔直的跑道上练习跑步,已知甲跑完全程需要4分钟,乙跑完全程需6分钟,如果两人分别从跑道的两端同时出发,相向而行,那么两人相遇所需的时间是()A2.4分钟B2.5分钟C2.6分钟D3分钟二、填空题(本大题共8个小题,每小题3分,共24分)11(3分)2011年1月1日,岳阳市的最低气温是1,最高气温是5,这一天岳阳的最高气温比最低气温高 12(3分)多项式5x33x2y2+2xy+1的次数是 13(3分)a、b两数的平方和,用代数式表示为 14(3分)已知a2+2a1,
4、则3a2+6a1 15(3分)已知关于x的方程2xa+30的解是x3,则a 16(3分)2018年10月1日,小明将一笔钱存入银行,定期3年,年利率是5%,若到期后取出,他可得本息和为23000元,则小明存入的本金是 元17(3分)若|a|3,|b|5且a0,则ab 18(3分)观察图形,并阅读相关的文字,回答:10条直线相交,最多有 交点三、解答题(本题共4个题,每题6分,共24分,要有解题的主要过程)19(6分)计算(1)32()+(8)(2)2(2)()(12)20(6分)解方程(1)4x35x5(2)121(6分)先化简,再求值:5xy(2x2xy)+2(x2+3),其中x1,y222
5、(6分)如图,AOB与BOD互为余角,OB是AOC的平分线,AOB25,求COD的度数四、(本题满分7分)23(7分)某中学为了了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图,请根图中提供的信息,解答下列问题:(1)参加调查的人数共有 人;(2)将条形图补充完整;(3)求在扇形图中表示“其它球类”的扇形的圆心角的度数五、(本题满分7分)24(7分)甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时
6、离展览馆还有多远?六、(本题满分8分)25(8分)阅读理解:你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法例题:利用一元一次方程将0.化成分数,设0.x,由于0.0.777,可知100.7.7777+0.,于是7+x10x 可解得,x,即0.请你仿照上述方法完成下列问题:(1)将0.化成分数形式;(2)将0.化成分数形式2018-2019学年贵州省铜仁市松桃县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填入括号内)1(3分)2的相反数是()A2
7、B2CD【分析】根据相反数的意义,只有符号不同的数为相反数【解答】解:根据相反数的定义,2的相反数是2故选:A【点评】本题考查了相反数的意义注意掌握只有符号不同的数为相反数,0的相反数是02(3分)下面计算正确的是()A329B5+38C(2)38D3a+2b5ab【分析】根据有理数的混合运算法则和合并同类项法则解答【解答】解:A、原式9,故本选项错误B、原式2,故本选项错误C、原式8,故本选项正确D、3a与2b不是同类项,不能合并,故本选项错误故选:C【点评】考查了有理数的混合运算和合并同类项,要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字
8、母指数3(3分)下面几何图形中,是棱柱的是()ABCD【分析】棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形【解答】解:棱柱的侧面应是四边形,符合这个条件的只有选项B故选:B【点评】本题考查棱柱的定义,应抓住棱柱侧面为四边形进行选择4(3分)我国总人口数约为1370000000人,1370000000这个数用科学记数法表示正确的是()A137107B13.7108C1.37109D0.1371010【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对
9、值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:1370000000这个数用科学记数法表示正确的是1.37109故选:C【点评】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5(3分)某地教育系统为了解本地区30000名初中生的体重情况,从中随机抽取了500名初中生的体重进行统计以下说法正确的是()A30000名初中生是总体B500名初中生是总体的一个样本C500名初中生是样本容量D每名初中生的体重是个体【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;
10、样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量分别进行分析即可【解答】解:A、30000名初中生是总体,说法错误,应为30000名初中生的体重是总体,故此选项错误;B、500名初中生是总体的一个样本,说法错误,应为500名初中生的体重是总体的一个样本,故此选项错误;C、500名初中生是样本容量,说法错误,应为500是样本容量,故此选项错误;D、每名初中生的体重是个体,说法正确,故此选项正确;故选:D【点评】此题主要考查了总体、个体、样本、样本容量,关键是要注意考察对象要说明,样本容量只是个数字,没有单位6(3分)下列方程的变形中,正确的是()
11、A若x48,则x84B若2(2x+3)2,则4x+62C若x4,则x2D若,则去分母得23(x1)1【分析】利用等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式,分别判断得出答案【解答】解:A、若x48,则x8+4,故此选项错误;B、若2(2x+3)2,则4x+62,正确;C、若x4,则x8,故此选项错误;D、若,则去分母得23(x1)6,故此选项错误;故选:B【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键7(3分)有理数a,b在数轴上的位置如图所示,则下列结论中,不正确的是()Aa+b0Bab0CD
12、|a|b|【分析】根据数轴反映的基本信息,对两数的和、差、商及绝对值逐一判断【解答】解:观察数轴可知,a0b,|a|b|,A、异号两数相加,取绝对值较大的加数符号,a+b0,故本选项结论正确;B、因为a小b大,ab0,故本选项结论正确;C、因为a、b异号,所以0,故本选项结论正确;D、观察数轴可知|a|b|,故本选项结论错误故选:D【点评】考查了数轴,绝对值由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想8(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,若AOC12
13、0,则BOD等于()A40B50C60D70【分析】由图可知AOCAOB+BOC,BOC+BODCOD,依此角之间的和差关系,即可求解【解答】解:根据题意得:AOC+DOBAOB+BOC+DOBAOB+COD90+90180,AOC120,BOD60,故选:C【点评】本题考查了余角和补角的定义;找出AOC+DOBAOB+BOC+DOB是解题的关键9(3分)如图,已知线段AB10cm,点C在线段AB上,点M是线段AC的中点,点N是线段BC的中点,那么线段MN的长为()A6cmB5cmC4cmD不能确定【分析】由于点M是线段AC中点,所以MCAC,由于点N是线段BC中点,则CNBC,而MNMC+C
14、N(AC+BC)AB,从而可以求出MN的长度【解答】解:M是线段AC的中点,N是线段BC的中点,MCAC,CNBC,MNMC+CNAC+BC(AC+BC)105cm故选:B【点评】本题考查了两点间的距离不管点C在哪个位置,MC始终等于AC的一半,CN始终等于BC的一半,而MN等于MC加上(或减去)CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半10(3分)甲、乙两人在一条笔直的跑道上练习跑步,已知甲跑完全程需要4分钟,乙跑完全程需6分钟,如果两人分别从跑道的两端同时出发,相向而行,那么两人相遇所需的时间是()A2.4分钟B2.5分钟C2.6分钟D3分钟【分析】设两人相遇所需的时
15、间是x分钟,根据甲跑的路程+乙跑的路程1,解方程即可【解答】解:设两人相遇所需的时间是x分钟,根据题意得:+1,解得:x2.4,答:两人相遇所需的时间是2.4分钟;故选:A【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解二、填空题(本大题共8个小题,每小题3分,共24分)11(3分)2011年1月1日,岳阳市的最低气温是1,最高气温是5,这一天岳阳的最高气温比最低气温高6【分析】温差就是最高气温与最低气温的差,根据有理数的减法可解答【解答】解:根据温差最高气温最低气温,得5(1)6故答案为:6【点评】本题主要是考查了温差
16、的概念,以及有理数的减法,是一个基础的题目12(3分)多项式5x33x2y2+2xy+1的次数是4【分析】多项式的次数是多项式中最高次项的次数,据此即可求解【解答】解:多项式5x33x2y2+2xy+1的次数是4,故答案为:4【点评】本题考查了多项式的系数的定义,理解定义是关键13(3分)a、b两数的平方和,用代数式表示为a2+b2【分析】根据题意分别表示出a与b的平方,进而表示出a、b的平方和【解答】解:a的平方表示为a2,b的平方表示为b2,则a、b两数的平方和用代数式表示为:a2+b2故答案为:a2+b2【点评】此题考查了列代数式,解此类题的关键是弄懂题意,列出正确的代数式,本题要注意两
17、数的平方和与两数和的平方的区别14(3分)已知a2+2a1,则3a2+6a12【分析】将原代数式3a2+6a1变形成3(a2+2a)1,然后将a2+2a1整体代入即可求解【解答】解:a2+2a1,3a2+6a13(a2+2a)13112故答案为:2【点评】本题主要考查整体代入求代数式值的能力,将原代数式变形是解题的关键15(3分)已知关于x的方程2xa+30的解是x3,则a3【分析】把x3代入方程2xa+30得到关于a的一元一次方程,解之即可【解答】解:把x3代入方程2xa+30得:6a+30,解得:a3,故答案为:3【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键
18、16(3分)2018年10月1日,小明将一笔钱存入银行,定期3年,年利率是5%,若到期后取出,他可得本息和为23000元,则小明存入的本金是20000元【分析】设小明存入的本金是x元,根据本息和(1+年份年利率)本金,即可得出关于x的一元一次方程,解之即可得出结论【解答】解:设小明存入的本金是x元,依题意,得:(1+35%)x23000,解得:x20000故答案为:20000【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键17(3分)若|a|3,|b|5且a0,则ab2或8【分析】先求出a、b的值,再代入求出即可【解答】解:|a|3,|b|5,a0,a3,b
19、5,当a3,b5时,ab352;当a3,b5时,ab3(5)8;综上,ab的值为2或8,故答案为:2或8【点评】本题考查了绝对值和有理数的减法,求代数式的值的应用,能求出a、b的值是解此题的关键18(3分)观察图形,并阅读相关的文字,回答:10条直线相交,最多有45交点【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,故可猜想,n条直线相交,最多有1+2+3+(n1)n(n1)个交点【解答】解:10条直线两两相交:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而323,634,101+
20、2+3+445,十条直线相交最多有交点的个数是: n(n1)10945故答案为:45【点评】此题主要考查了相交线,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法三、解答题(本题共4个题,每题6分,共24分,要有解题的主要过程)19(6分)计算(1)32()+(8)(2)2(2)()(12)【分析】(1)先算乘方,再算乘除,最后算加法;(2)根据乘法分配律简便计算【解答】解:(1)32()+(8)(2)29()+(8)4121;(2)()(12)(12)(12)(12)8+9+1011【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运
21、算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化20(6分)解方程(1)4x35x5(2)1【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案【解答】解:(1)移项得:4x5x5+3,合并同类项得:x2,系数化为1得:x2,(2)去分母得:3x2(2x1)4,去括号得:3x4x+24,移项得:3x4x42,合并同类项得:x2,系数化为1得:x2【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键21(6分)先化简,再
22、求值:5xy(2x2xy)+2(x2+3),其中x1,y2【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值【解答】解:原式5xy2x2+xy+2x2+66xy+6,当x1,y2时,原式12+66【点评】此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键22(6分)如图,AOB与BOD互为余角,OB是AOC的平分线,AOB25,求COD的度数【分析】根据角平分线的定义求出BOC,再根据余角的定义列式求出BOD,然后计算即可得解【解答】解:OB是AOC的平分线,BOCAOB25,AOB与BOD互为余角,BOD90AOB902565,CODBODBOC652540【点评】
23、本题考查了余角和补角,角平分线的定义,是基础题,熟记相关概念是解题的关键四、(本题满分7分)23(7分)某中学为了了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图,请根图中提供的信息,解答下列问题:(1)参加调查的人数共有300人;(2)将条形图补充完整;(3)求在扇形图中表示“其它球类”的扇形的圆心角的度数【分析】(1)由乒乓球的人数及其所占百分比可得总人数;(2)用总人数减去另外三种项目的人数求得足球的人数即可补全条形图;(3)用360乘以“其他球类”人数所占比例即可得【解答】解:(1)
24、参加调查的总人数为6020%300(人),故答案为:300;(2)足球的人数为300(120+60+30)90(人),补全图形如下:(3)在扇形图中表示“其它球类”的扇形的圆心角的度数为36036【点评】本题主要考查了条形图和扇形图,在解题时要注意灵活应用条形图和扇形图之间的关系是本题的关键五、(本题满分7分)24(7分)甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?【分析】根据甲乙两人所走的路程相等,设乙要x分钟才能追上甲,列方程求解;乙追上甲时离展览馆的距离1000乙所走的路
25、程【解答】解:设乙要x分钟才能追上甲,那么有80(5+x)180x,解方程得:x4乙追上甲时离展览馆还有10001804280(米)答:乙4分钟能追上甲,追上甲时离展览馆还有280米【点评】本题属于追及问题中的简单题型,关键是运用“两人所走的路程相等”这一相等关系,列出方程求解六、(本题满分8分)25(8分)阅读理解:你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法例题:利用一元一次方程将0.化成分数,设0.x,由于0.0.777,可知100.7.7777+0.,于是7+x10x 可解得,x,即0.请你仿照上述方法完成下列问题:(1)将0.化成分数形式;(2)将0.化成分数形式【分析】(1)设0.x,根据例题的解法,列出关于x的一元一次方程,解之即可,(2)设0. x,根据例题的解法,列出关于x的一元一次方程,解之即可【解答】解:(1)设0.x,可列出方程:4+x10x,解得:x,所以0.,(2)设0. x,可列出方程:25+x100x,解得:x,所以0. 【点评】本题考查了解一元一次方程和有理数,正确掌握解一元一次方程的方法是解题的关键