欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018-2019学年浙江省金华市东阳市高二(下)期中数学试卷(含详细解答)

    • 资源ID:120716       资源大小:436.50KB        全文页数:23页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018-2019学年浙江省金华市东阳市高二(下)期中数学试卷(含详细解答)

    1、2018-2019学年浙江省金华市东阳中学高二(下)期中数学试卷一选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(4分)已知集合Ax|ylgx,Bx|y,则AB()A0,2B2,0C(0,2D2,0)2(4分)设m,nR,则“mn”是“()mn1”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件3(4分)已知函数f(x)是偶函数,定义域为R,单调增区间为0,+),且f(1)0,则(x1)f(x1)0的解集为()A2,0B1,1C(,01,2D(,10,14(4分)已知甲、乙、丙三人去参加某公司面试,他们被公司录取

    2、的概率分别为,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()ABCD5(4分)ABC中,(ab)(sinA+sinB)(cb)sinC其中a,b,c分别为内角A,B,C的对边,则A()ABCD6(4分)设aR,若(x2+)9与(x)9的二项展开式中的常数项相等,则a()A4B4C2D27(4分)已知 0a,随机变量 的分布列如下:101Paa当 a 增大时,()AE()增大,D()增大BE()减小,D()增大CE()增大,D()减小DE()减小,D()减小8(4分)关于x的不等式解集为a,b,则ab()A1B2C3D49(4分)已知函数f(x)|x1|+|xa|,a1

    3、,若f(x)4的解集为(,0)(4,+),则a的值()A1B2C3D410(4分)已知不等式ex4x+2ax+b(a,bR,a4)对任意的实数x恒成立,则的最大值为()Aln2B0C2ln2D1二填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11(6分)已知多项式(x+2)5(x+1)5+a4x4+a3x3+a2x2+a1x+a0,则a0   ,a1   12(6分)设x,y满足约束条件,则z2x+3y的最大值为   ;满足条件的x,y构成的平面区域的面积是   13(6分)当x0时,的最小值为   ;当x1时,的最小值为3

    4、,则实数t的值为   14(6分)已知函数f(x)(i)f(2)   (ii)若方程f(x)x+a有且只有一个实根,则实数a的取值范围是   15(4分)若定义在R上的函数f(x)满足f(x)+f(x)1,f(0)4,则不等式f(x)+1的解集为   16(4分)工人在安装一个正五边形的零件时,需要固定如图所示的五个位置的螺栓若按一定的顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓则不同的固定螺栓方式的种数是   17(4分)已知函数恰有三个零点x1,x2,x3,且0x1x2x3,记Mixilnxi+a(i1,2,3),则   三

    5、解答题:本大题5小题,共74分,解答应写出文字说明,证明过程或演算步骤.18(14分)已知函数f(x)cos(2x)2sin2x+a(aR),且f()0()求a的值;()若f(x)在区间0,m上是单调函数,求m的最大值19(15分)已知平面多边形PABCD中,PAPD,AD2DC2BC4,ADBC,APPD,ADDC,E为PD的中点,现将APD沿AD折起,使PC2(1)证明:CE平面ABP;(2)求直线AE与平面ABP所成角的正弦值20(15分)已知函数f(x)ln(k0)(1)求函数f(x)的定义域;(2)若函数f(x)在区间2,+)上是减函数,求实数k的取值范围21(15分)已知椭圆C:+

    6、1(a0,b0)的左右焦点分别是F1、F2,C过点M(1,),离心率e(1)求椭圆C的方程;(2)若PQ为椭圆C过F1的弦,R为PF2的中点,O为坐标原点,求RF1F2、OF1Q面积之和的最大值22(15分)已知aR,函数f(x)+alnx,x(0,6)()讨论f(x)的单调性;()若x2是f(x)的极值点,且曲线yf(x)在两点P(x1,f(x1),Q(x2,f(x2)(x1x2)处的切线互相平行,这两条切线在y轴上的截距分别为b1,b,求b1b2的取值范围2018-2019学年浙江省金华市东阳中学高二(下)期中数学试卷参考答案与试题解析一选择题:本大题共10小题,每小题4分,共40分.在每

    7、小题给出的四个选项中,只有一项是符合题目要求的.1(4分)已知集合Ax|ylgx,Bx|y,则AB()A0,2B2,0C(0,2D2,0)【分析】求出A中函数的定义域确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可【解答】解:由A中的函数ylgx,得到x0,即A(0,+);由B中的不等式变形得:4x20,即B2,2则AB(0,2故选:C【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2(4分)设m,nR,则“mn”是“()mn1”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即

    8、可【解答】解:由()mn1得mn0,得mn,则“mn”是“()mn1”充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键3(4分)已知函数f(x)是偶函数,定义域为R,单调增区间为0,+),且f(1)0,则(x1)f(x1)0的解集为()A2,0B1,1C(,01,2D(,10,1【分析】根据题意,结合函数的单调性以及特殊值可得在区间0,1上,f(x)0,在区间1,+)上,f(x)0,结合函数的奇偶性可得在区间1,0上,f(x)0,在区间(,1上,f(x)0,综合可得:在区间1,1上,f(x)0,在区间(,1和1,+)上,f(x)0,又由(x1)f

    9、(x1)0或,解可得x的取值范围,即可得答案【解答】解:根据题意,函数f(x)的单调增区间为0,+),且f(1)0,则在区间0,1上,f(x)0,在区间1,+)上,f(x)0,又由函数f(x)为偶函数,在区间1,0上,f(x)0,在区间(,1上,f(x)0,综合可得:在区间1,1上,f(x)0,在区间(,1和1,+)上,f(x)0,(x1)f(x1)0或,解可得:x0或1x2,即不等式的解集为(,01,2;故选:C【点评】本题考查函数的奇偶性与单调性的综合应用,关键是分析f(x)的函数值的正负情况,属于基础题4(4分)已知甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为,且三人录取结

    10、果相互之间没有影响,则他们三人中至少有一人被录取的概率为()ABCD【分析】他们三人中至少有一人被录取的对立事件是三个人都没有被录取,利用对立事件概率计算公式能求出他们三人中至少有一人被录取的概率【解答】解:甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为,且三人录取结果相互之间没有影响,他们三人中至少有一人被录取的对立事件是三个人都没有被录取,他们三人中至少有一人被录取的概率为:P1(1)(1)(1)故选:B【点评】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题5(4分)ABC中,(ab)(sinA+sinB)(cb)sinC其中a,b,c分别为

    11、内角A,B,C的对边,则A()ABCD【分析】由正弦定理化简可得,b2+c2a2bc,然后由余弦定理可得,cosA可求A【解答】解:(ab)(sinA+sinB)(cb)sinC,由正弦定理可得,(ab)(a+b)(cb)c,化简可得,b2+c2a2bc,由余弦定理可得,cosA0AA故选:B【点评】本题主要考查了正弦定理及余弦定理在求解三角形中的简单应用,属于基础试题6(4分)设aR,若(x2+)9与(x)9的二项展开式中的常数项相等,则a()A4B4C2D2【分析】根据二项式定义的通项公式求出常数项建立方程进行求解即可【解答】解:(x2+)9的通项公式为Tk+1C9k(x2)9k()kC9

    12、kx182k2kxkC9k2kx183k,由183k0得k6,即常数项为T6+1C96268464,(x)9的通项公式为Tr+1C9r(x)9r()rC9rx9rarx2rC9rakx93r,由93r0得r3,即常数项为T3+1C93a384a3,两个二项展开式中的常数项相等,84a38464,a364,即a4,故选:A【点评】本题主要考查二项式定理的应用,结合通项公式求出常数项,建立方程是解决本题的关键7(4分)已知 0a,随机变量 的分布列如下:101Paa当 a 增大时,()AE()增大,D()增大BE()减小,D()增大CE()增大,D()减小DE()减小,D()减小【分析】由随机变量

    13、 的分布列,推导出E()a,从而当 a 增大时,E()增大;D()(a)2+,由0,得到当 a 增大时,D()增大【解答】解:0a,由随机变量 的分布列,得:E()a,当 a 增大时,E()增大;D()(1a+)2+(0a+)2(a)+(1a+)2aa2+a+(a)2+,0,当 a 增大时,D()增大故选:A【点评】本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题8(4分)关于x的不等式解集为a,b,则ab()A1B2C3D4【分析】令f(x)x23x+4,求出f(x)的最小值,然后根据f(x)的图象与性质求a,b的值

    14、【解答】解:令f(x)x23x+4,则f(x)(x2)2+1,f(x)minf(2)1,由题意可知a1,且f(a)f(b)b,ab,由f(b)b得到 b23b+4b,解得b(舍去)或b4,由抛物线的对称轴为x2得到a0,ab4故选:D【点评】本题考查了二次函数的图象与性质、一元二次不等式的解法与应用问题9(4分)已知函数f(x)|x1|+|xa|,a1,若f(x)4的解集为(,0)(4,+),则a的值()A1B2C3D4【分析】对f(x)去绝对值,根据f(x)4可得方程组,然后解方程组即可得a的值【解答】解:a1,f(x)|x1|+|xa|,f(x)4的解集为(,0)(4,+),a3故选:C【

    15、点评】本题考查了绝对值不等式的解法,属基础题10(4分)已知不等式ex4x+2ax+b(a,bR,a4)对任意的实数x恒成立,则的最大值为()Aln2B0C2ln2D1【分析】不等式化为ex(a+4)x+2b0恒成立,构造函数f(x)ex(a+4)x+2b,利用导数f(x)判断f(x)的单调性,求f(x)的最值,转化为的不等式,从而求出它的最大值【解答】解:不等式ex4x+2ax+b化为ex(a+4)x+2b0,令f(x)ex(a+4)x+2b,则f(x)ex(a+4),若a4,则f(x)0,函数f(x)函数单调增,当x时,f(x),不可能恒有f(x)0;若a4,由f(x)ex(a+4)0,得

    16、极小值点xln(a+4),由f(ln(a+4)(a+4)(a+4)ln(a+4)+2b0,得b(a+4)(a+4)ln(a+4)+2,则,令g(t)1lnt,ta+40,则g(t),则当0t1时,g(t)0,当t1时,g(t)0,g(t)maxg(1)0,则的最大值为0故选:B【点评】本题考查了不等式恒成立问题,也考查了利用导数研究函数的单调性与求最值问题,考查了构造函数与转化思想,属难题二填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11(6分)已知多项式(x+2)5(x+1)5+a4x4+a3x3+a2x2+a1x+a0,则a031,a175【分析】在所给的等式中,令x

    17、0,可得a0的值a1 即展开式(x+2)5(x+1)5a4x4+a3x3+a2x2+a1x+a0中,x的系数,为16,计算求得结果【解答】解:对于多项式(x+2)5(x+1)5+a4x4+a3x3+a2x2+a1x+a0,令x0,可得 321+a0,则a031a1 即展开式(x+2)5(x+1)5a4x4+a3x3+a2x2+a1x+a0,中x的系数,为1675,故答案为:31;75【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题12(6分)设x,y满足约束条件,则z2x+3y的最大值为11;满足条件的x,y构成的平面区域的面积是【分析】作出不等式对应的

    18、平面区域,利用线性规划的知识,通过平移即可求z的最大值【解答】解:作出x,y满足约束条件,对应的平面区域(阴影部分),由z2x+3y,得yx+,平移直线yx+,由图象可知当直线yx+经过点C时,直线yx+的截距最大,此时z最大由,解得A(,)解得B(1,);解得C(1,3)此时z的最大值为z21+3311,可行域的面积为:故答案为:11;【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法13(6分)当x0时,的最小值为2;当x1时,的最小值为3,则实数t的值为4【分析】根据题意,第一空:由基本不等式的性质可得22,分析可得答案;第二空,分析可得x+(x+1)+121,

    19、即可得x+的最小值为21,结合题意可得213,解可得t的值,即可得答案【解答】解:根据题意,当x0时,22,当且仅当x1时等号成立,则的最小值为2;当x1时,x+10,则x+(x+1)+121,当且仅当x+1时等号成立,则x+的最小值为21,则有213,解可得t4;故答案为:2,4【点评】本题考查基本不等式的性质以及应用,关键是掌握基本不等式的形式14(6分)已知函数f(x)(i)f(2)4(ii)若方程f(x)x+a有且只有一个实根,则实数a的取值范围是,1)【分析】(i)根据分段函数的表达式,直接代入即可(ii)求出当0x1,1x2,2x3时,函数f(x)的解析式和图象,利用yx+a的交点

    20、个数进行判断即可【解答】解:(i)f(2)2f(1)4f(0)414,(ii)当0x1时,1x10,f(x)2f(x1)2,当1x2时,0x11,f(x)2f(x1)2()x4,当2x3时,1x12,f(x)2f(x1)2()x5()x6,作出函数f(x)的图象如图,其中f(0)1,f(1)2f(0)2,f(3)2f(2)4,f(4)2f(3)8,设直线g(x)x+a,当g(x)x+a分别过(0,1),A(1,2),B(2,4)时,则g(0)a1,g(1)+a2,得a,g(2)3+a4,得a1,由图象知要使方程f(x)x+a有且只有一个实根,则g(x)在A,B之间的区域,即a1,即实数a的取值

    21、范围是,1),故答案为:4,1)【点评】本题主要考查函数与方程的应用,求出函数的解析式,作出两个函数的图象,利用数形结合是解决本题的关键综合性较强,有一定的难度15(4分)若定义在R上的函数f(x)满足f(x)+f(x)1,f(0)4,则不等式f(x)+1的解集为x|x0【分析】不等式f(x)+1可化为exf(x)ex3,设g(x)exf(x)ex,导数法可判g(x)的单调性,可得不等式的解集【解答】解:不等式f(x)+1可化为exf(x)ex3设g(x)exf(x)ex,(xR),则g(x)exf(x)+exf(x)exexf(x)+f(x)1,f(x)+f(x)1,f(x)+f(x)10,

    22、g(x)0,yg(x)在定义域上单调递增,exf(x)ex3,g(x)3,又g(0)e0f(0)e0413,g(x)g(0),x0,原不等式的解集为x|x0故答案为:x|x0【点评】本题考查不等式的解集,涉及函数和导数以及构造法,属中档题16(4分)工人在安装一个正五边形的零件时,需要固定如图所示的五个位置的螺栓若按一定的顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓则不同的固定螺栓方式的种数是10【分析】由排列组合及简单的计数问题得:不同的固定螺栓方式的种数是10,得解【解答】解:不妨先在编号为1,2,3,4,5中选1个固定螺栓,共5种取法,不妨取编号1,由已知有再在编号为3,4中选1个

    23、,共2种取法,再按题意操作即可,则不同的固定螺栓方式的种数是5210,故答案为:10【点评】本题考查了排列组合及简单的计数问题,属中档题17(4分)已知函数恰有三个零点x1,x2,x3,且0x1x2x3,记Mixilnxi+a(i1,2,3),则1【分析】由题意可得f(x)0,即(1a)xlnx+(a1)(xlnx)20,可设txlnx,即有t2+(a1)t+1a0,运用韦达定理,以及导数求得函数t的单调性和极值,画出图象可得所求值【解答】解:函数恰有三个零点x1,x2,x3,即为f(x)0,即(1a)xlnx+(a1)(xlnx)20,可设txlnx,即有t2+(a1)t+1a0,由txln

    24、x的导数为t1+lnx,可得x时,t0,可得函数t递增;0x时,t0,可得函数t递减;可得t有极小值,为,函数txlnx的图象如图所示:t2+(a1)t+1a0由两个异号实根,可得t1t21a,t1+t21a,可设M1M2t1+a,M3t2+a,则M1M2M32(t1+a)(t2+a)2t1t2+a2+a(t1+t2)2(1a+a2+aa2)21故答案为:1【点评】本题考查函数和方程的转化思想,考查换元法和二次方程的韦达定理的运用,化简运算能力,属于中档题三解答题:本大题5小题,共74分,解答应写出文字说明,证明过程或演算步骤.18(14分)已知函数f(x)cos(2x)2sin2x+a(aR

    25、),且f()0()求a的值;()若f(x)在区间0,m上是单调函数,求m的最大值【分析】()直接利用三角函数关系式的变换和函数的值求出函数的关系式()利用函数的关系式和函数的单调性的应用求出m的最大值【解答】解:()函数f(x)cos(2x)2sin2x+a,且f()0解得:a1所以:f(x)()由于:f(x)在区间0,m上是单调函数,故:当函数为单调递增时,(kZ),解得:(kZ),所以,m时函数单调递增,故函数f(x)在0,上是单调函数,当函数为单调递减时,(kZ),解得时函数单调递减,综上所述:m的最大值为【点评】本题考查的知识要点:三角函数关系式的恒等变变换正弦型函数性质的应用,主要考

    26、查学生的运算能力和转化能力,属于基础题型19(15分)已知平面多边形PABCD中,PAPD,AD2DC2BC4,ADBC,APPD,ADDC,E为PD的中点,现将APD沿AD折起,使PC2(1)证明:CE平面ABP;(2)求直线AE与平面ABP所成角的正弦值【分析】(1)取PA中点F,连接EF,可证四边形BCEF是平行四边形,得出CEBF,故而CE平面ABP;(2)判断P在底面射影O的位置,建立空间坐标系,求出平面PAB的法向量,则|cos|为直线AE与平面ABP所成角的正弦值【解答】(1)证明:取PA中点F,连接EF,则EF为PAD的中位线,EFAD,又BCAD,EFBC,四边形BCEF是平

    27、行四边形,CEBF,又BF平面PAB,CE平面PAB,CE平面PAB(2)解:取AD的中点M,连接BM,PM,APBP,PMAD,又DMBC,ADDC,CDBC,四边形BCDM是正方形,BMAD,BMP为二面角PADB的平面角,设P在底面ABCD上的射影为O,APPD,APDP,AD4,PD2,又PC2,PDPC,O为BM的中点,OC,OP设CD的中点为N,以O为原点,以OB,ON,OP为坐标轴建立空间直角坐标系,则A(1,2,0),B(1,0,0),P(0,0,),E(,1,),(2,2,0),(1,2,),(,3,),设平面PAB的法向量为(x,y,z),则,即,令x1可得(1,1,),c

    28、os直线AE与平面ABP所成角的正弦值为|cos|【点评】本题考查了线面平行的判定,空间向量与空间角的计算,属于中档题20(15分)已知函数f(x)ln(k0)(1)求函数f(x)的定义域;(2)若函数f(x)在区间2,+)上是减函数,求实数k的取值范围【分析】本题第(1)题根据对数函数的定义域得到不等式0,然后变成同解不等式(kx1)(x1)0,然后要对k进行分类讨论得出函数f(x)的定义域;第(2)题根据复合函数增减性可得y在区间2+)上是减函数,求导法可得k的取值范围再根据定义域判断出k的取值范围综合可得实数k的取值范围【解答】解:(1)由题意,可知:0即:(kx1)(x1)0k0,x1

    29、,x21当0k1时,x,或x1,故函数f(x)的定义域为(,1)(,+);当k1时,x1或x1,故函数f(x)的定义域为(,1)(1,+);当k1时,x或x1,故函数f(x)的定义域为(,)(1,+)(2)若函数f(x)ln在区间2,+)上是减函数,则y在区间2+)上是减函数,且0在2+)上恒成立y0即:1k0,k1又0在2+)上恒成立2,即:k综上,可得:k1【点评】本题第(1)题主要考查对数函数的定义域,不等式的解法,分类讨论思想的应用;第(2)题主要考查复合函数的增减性问题以及求导法对于求参数取值范围的应用本题属中档题21(15分)已知椭圆C:+1(a0,b0)的左右焦点分别是F1、F2

    30、,C过点M(1,),离心率e(1)求椭圆C的方程;(2)若PQ为椭圆C过F1的弦,R为PF2的中点,O为坐标原点,求RF1F2、OF1Q面积之和的最大值【分析】(1)运用椭圆的离心率公式和M满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)由O,R分别为中点,可得RF1F2的面积为PF1F2的面积的一半,即为PF1O的面积,RF1F2、OF1Q面积之和设为S,则SSPQO,讨论直线PQ的斜率不存在,求得P,Q的坐标,可得PQO的面积;PQ的斜率设为k,可得PQ的方程,代入椭圆方程,运用韦达定理和弦长公式,以及点到直线的距离公式,以及三角形的面积公式,化简整理,结合不等式的性质,可得所求面

    31、积的最大值【解答】解:(1)由e,设a2t,ct,t0,可得bt,椭圆方程为+1,代入M,可得+1,可得t1,则a2,b,c1,可得椭圆方程为+1;(2)由O,R分别为F1F2,PF2的中点,可得RF1F2的面积为PF1F2的面积的一半,即为PF1O的面积,RF1F2、OF1Q面积之和设为S,则SSPQO,当直线PQ的斜率不存在时,其方程为x1,此时SPQO1();当直线PQ的斜率存在时,设其方程为:yk(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k0;联立 ,解得(3+4k2)x2+8k2x+4k2120,144(k2+1)0,故x1+x2,x1x2,故|P

    32、Q|x1x2|,点O到直线PQ的距离d,S|PQ|d6,令u3+4k2(3,+),故S6(0,),故S的最大值为【点评】本题考查的知识点是椭圆的方程,椭圆的性质,直线与椭圆的位置关系,难度中档22(15分)已知aR,函数f(x)+alnx,x(0,6)()讨论f(x)的单调性;()若x2是f(x)的极值点,且曲线yf(x)在两点P(x1,f(x1),Q(x2,f(x2)(x1x2)处的切线互相平行,这两条切线在y轴上的截距分别为b1,b,求b1b2的取值范围【分析】()f(x)+对a分类讨论,利用导数研究函数的单调性即可得出()由x2是函数f(x)的极值点,可得由(1)可知,2,解得a1设曲线

    33、在点P(x1,f(x1)处的切线方程为y(+lnx1)(+)(xx1),曲线在点Q(x2,f(x2)处的切线方程为y(+lnx2)(+)(xx2)若这两条切线互相平行,可得+,化为:+又0x1x26可得x1(3,4),两条切线在y轴上的截距:令x0,则b1+lnx11,b2+lnx21可得b1b24()ln+ln()令g(x)8x2lnx+ln(x),x利用导数研究函数的单调性即可得出【解答】解:()f(x)+当a0时,f(x)0在x(0,6)上恒成立,函数f(x)在x(0,6)上单调递减,无单调递增区间;(1分)当a0,且6,即时,f(x)0在x(0,6)上恒成立,函数f(x)在x(0,6)

    34、上单调递减,无单调递增区间当a0,且6,即a时,函数f(x)在上,f(x)0,f(x)此时单调递减函数f(x)在上,f(x)0,f(x)此时单调递增 (3分)综上:当a时,函数f(x)在x(0,6)上单调递减,无单调递增区间当a时,函数f(x)在上单调递减;函数f(x)在上,单调递增()x2是函数f(x)的极值点,由(1)可知,2,解得a1设曲线在点P(x1,f(x1)处的切线方程为y(+lnx1)(+)(xx1),曲线在点Q(x2,f(x2)处的切线方程为y(+lnx2)(+)(xx2)若这两条切线互相平行,则+,化为:+,且0x1x26,x1(3,4),两条切线在y轴上的截距:令x0,则b1+lnx11,b2+lnx21b1b2+lnx11(+lnx21)4()ln+ln()令g(x)8x2lnx+ln(x),xg(x)8g(x)在区间上单调递减,(10分)g(x)即b1b2的取值范围是(12分)【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题


    注意事项

    本文(2018-2019学年浙江省金华市东阳市高二(下)期中数学试卷(含详细解答))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开