1、第2课时直线与椭圆题型一直线与椭圆的位置关系1.若直线ykx1与椭圆1总有公共点,则m的取值范围是()A.m1 B.m0C.0m5且m1 D.m1且m5答案D解析方法一由于直线ykx1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则00且m5,m1且m5.2.已知直线l:y2xm,椭圆C:1.试问当m取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解将直线l的方程与椭圆C的方程联立,得方程组将代入,整理得9x28mx2m240. 方程根的判别式(8m)249(2m24)8m2144.(1)当0,即3m3时,方程有两个不同的实数根,可知原
2、方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.(2)当0,即m3时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.(3)当0,即m3时,方程没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.思维升华 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.题型二弦长及中点弦问题命题点1弦长问题例1 斜率为1的直线l与椭圆y21相交于A,
3、B两点,则|AB|的最大值为()A.2 B. C. D.答案C解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0,则x1x2t,x1x2.|AB|x1x2|,当t0时,|AB|max.命题点2中点弦问题例2 已知P(1,1)为椭圆1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为_.答案x2y30解析方法一易知此弦所在直线的斜率存在,设其方程为y1k(x1),弦所在的直线与椭圆相交于A,B两点,A(x1,y1),B(x2,y2).由消去y得,(2k21)x24k(k1)x2(k22k1)0,x1x2,又x1
4、x22,2,解得k.经检验,k满足题意.故此弦所在的直线方程为y1(x1),即x2y30.方法二易知此弦所在直线的斜率存在,设斜率为k,弦所在的直线与椭圆相交于A,B两点,设A(x1,y1),B(x2,y2),则1, 1, 得0,x1x22,y1y22,y1y20,k.经检验,k满足题意.此弦所在的直线方程为y1(x1),即x2y30.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|A
5、B| (k为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练1 设离心率为的椭圆E:1(ab0)的左、右焦点分别为F1,F2,点P是E上一点,PF1PF2,PF1F2内切圆的半径为1.(1)求E的方程;(2)矩形ABCD的两顶点C,D在直线yx2上,A,B在椭圆E上,若矩形ABCD的周长为,求直线AB的方程.解(1)RtPF1F2内切圆的半径r(|PF1|PF2|F1F2|)ac,依题意有ac1.又,则a,c1,从而b1.故椭圆E的方程为y21.(2)设直线AB的方程为yxm,代入椭圆E的方程,整理得3x24mx2m220,由0得m.设A(
6、x1,y1),B(x2,y2),则x1x2,x1x2.|AB|x2x1|.易知|BC|,则由m知|BC|,所以由已知可得|AB|BC|,即,整理得41m230m710,解得m1或m(均满足mb0),e,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且(其中1).(1)求椭圆C的标准方程;(2)求实数的值.解(1)由椭圆的焦距为2,知c1,又e,a2,故b2a2c23,椭圆C的标准方程为1.(2)由,可知A,B,F三点共线,设点A(x1,y1),点B(x2,y2).若直线ABx轴,则x1x21,不符合题意;当AB所在直线l的斜率k存在时,设l的方程为yk(x
7、1).由消去y得(34k2)x28k2x4k2120. 的判别式64k44(4k23)(4k212)144(k21)0.x1x22,k2.将k2代入方程,得4x22x110,解得x.又(1x1,y1),(x21,y2),即1x1(x21),又1,.思维升华 一般地,在椭圆与向量等知识的综合问题中,平面向量只起“背景”或“结论”的作用,几乎都不会在向量的知识上设置障碍,所考查的核心内容仍然是解析几何的基本方法和基本思想.跟踪训练2 已知椭圆C的两个焦点分别为F1(1,0),F2(1,0),短轴的两个端点分别为B1,B2.(1)若F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2
8、,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.解(1)F1B1B2为等边三角形,则椭圆C的方程为3y21.(2)易知椭圆C的方程为y21,当直线l的斜率不存在时,其方程为x1,不符合题意;当直线l的斜率存在时,设直线l的方程为yk(x1),由得(2k21)x24k2x2(k21)0,由已知得0,设P(x1,y1),Q(x2,y2),则x1x2,x1x2,(x11,y1),(x21,y2),因为,所以0,即(x11)(x21)y1y2x1x2(x1x2)1k2(x11)(x21)(k21)x1x2(k21)(x1x2)k210,解得k2,即k,故直线l的方程为xy10或xy10
9、.1.若直线mxny4与O:x2y24没有交点,则过点P(m,n)的直线与椭圆1的交点个数是()A.至多为1 B.2C.1 D.0答案B解析由题意知,2,即b0),则c1.因为过F2且垂直于x轴的直线与椭圆交于A,B两点,且|AB|3,所以,b2a2c2,所以a24,b2a2c2413,椭圆的方程为1.5.(2018锦州质检)经过椭圆y21的一个焦点作倾斜角为45的直线l,交椭圆于A,B两点.设O为坐标原点,则等于()A.3 B.C.或3 D.答案B解析依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y0tan 45(x1),即yx1.代入椭圆方程y21并整理得3x24x0,解得x0或x
10、.所以两个交点坐标为A(0,1),B,所以(0,1).同理,直线l经过椭圆的左焦点时,也可得.6.设F1,F2分别是椭圆y21的左、右焦点,若椭圆上存在一点P,使()0(O为坐标原点),则F1PF2的面积是()A.4 B.3 C.2 D.1答案D解析()()0,PF1PF2,F1PF290.设|PF1|m,|PF2|n,则mn4,m2n212,2mn4,mn2,mn1.7.直线ykxk1与椭圆1的位置关系是_.答案相交解析由于直线ykxk1k(x1)1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.8.过点M(1,1)作斜率为的直线与椭圆C:1(ab0)相交于A,B两点,若M是线段
11、AB的中点,则椭圆C的离心率等于_.答案解析设A(x1,y1),B(x2,y2),则两式相减,得0,.,x1x22,y1y22,a22b2.又b2a2c2,a22(a2c2),a22c2,.9.已知椭圆C:1(ab0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|10,|AF|6,cosABF,则椭圆C的离心率e_.答案解析设椭圆的右焦点为F1,在ABF中,由余弦定理可解得|BF|8,所以ABF为直角三角形,且AFB90,又因为斜边AB的中点为O,所以|OF|c5,连接AF1,因为A,B关于原点对称,所以|BF|AF1|8,所以2a14,a7,所以离心率e.10
12、.已知直线MN过椭圆y21的左焦点F,与椭圆交于M,N两点.直线PQ过原点O与MN平行,且PQ与椭圆交于P,Q两点,则_.答案2解析不妨取直线MNx轴,椭圆y21的左焦点F(1,0),令x1,得y2,所以y,所以|MN|,此时|PQ|2b2,则2.11.如图,椭圆C:1(ab0)的右焦点为F,右顶点,上顶点分别为A,B,且|AB|BF|.(1)求椭圆C的离心率;(2)若斜率为2的直线l过点(0,2),且l交椭圆C于P,Q两点,OPOQ,求直线l的方程及椭圆C的方程.解(1)由已知|AB|BF|,即a,4a24b25a2,4a24(a2c2)5a2,e.(2)由(1)知a24b2,椭圆C:1.设
13、P(x1,y1),Q(x2,y2),直线l的方程为y22(x0),即2xy20.由消去y,得x24(2x2)24b20,即17x232x164b20.3221617(b24)0,解得b.x1x2,x1x2.OPOQ,0,即x1x2y1y20,x1x2(2x12)(2x22)0,5x1x24(x1x2)40.从而40,解得b1,满足b.椭圆C的方程为y21.12.设椭圆1(ab0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若8,O为坐标原点,求OCD的面积.解(1)过
14、焦点且垂直于长轴的直线被椭圆截得的线段长为,所以.因为椭圆的离心率为,所以,又a2b2c2,可解得b,c1,a.所以椭圆的方程为1.(2)由(1)可知F(1,0),则直线CD的方程为yk(x1).联立消去y得(23k2)x26k2x3k260.设C(x1,y1),D(x2,y2),所以x1x2,x1x2.又A(,0),B(,0),所以(x1,y1)(x2,y2)(x2,y2)(x1,y1)62x1x22y1y262x1x22k2(x11)(x21)6(22k2)x1x22k2(x1x2)2k268,解得k.从而x1x2,x1x20.所以|x1x2| ,|CD|x1x2|.而原点O到直线CD的距
15、离为d,所以OCD的面积为S|CD|d.13.(2018广州模拟)已知椭圆C:1(ab0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|OF2|2|OM|,则椭圆C的离心率为()A. B. C. D.答案D解析方法一|OA|OF2|2|OM|,M在椭圆C的短轴上,设椭圆C的左焦点为F1,连接AF1,|OA|OF2|,|OA|F1F2|,AF1AF2,从而AF1F2OMF2,又|AF1|2|AF2|2(2c)2,|AF1|c,|AF2|c,又|AF1|AF2|2a,c2a,即.故选D.方法二|OA|OF2|2|OM|,M在椭圆C的短轴上,在RtMOF
16、2中,tanMF2O,设椭圆C的左焦点为F1,连接AF1,|OA|OF2|,|OA|F1F2|,AF1AF2,tanAF2F1,设|AF1|x(x0),则|AF2|2x,|F1F2|x,e,故选D.14.已知椭圆1(ab0)短轴的端点为P(0,b),Q(0,b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的斜率之积等于,则点P到直线QM的距离为_.答案b解析设A(x0,y0),则B点坐标为(x0,y0),则,即,由于1,则,故,则,不妨取M(a,0),则直线QM的方程为bxayab0,则点P到直线QM的距离为db.15.平行四边形ABCD内接于椭圆1,直线AB的
17、斜率k12,则直线AD的斜率k2等于()A. B. C. D.2答案C解析设AB的中点为G,则由椭圆的对称性知,O为平行四边形ABCD的对角线的交点,则GOAD.设A(x1,y1),B(x2,y2),则有两式相减得,整理得k12,即.又G,所以kOG,即k2,故选C.16.过椭圆1(ab0)上的动点M作圆x2y2的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,求EOF面积的最小值.解设M(x0,y0),P(x1,y1),Q(x2,y2),由题意知PQ斜率存在,且不为0,所以x0y00,则直线MP和MQ的方程分别为x1xy1y,x2xy2y.因为点M在MP和MQ上,所以有x1x0y1y0,x2x0y2y0,则P,Q两点的坐标满足方程x0xy0y,所以直线PQ的方程为x0xy0y,可得E和F,所以SEOF|OE|OF|,因为b2ya2xa2b2,b2ya2x2ab|x0y0|,所以|x0y0|,所以SEOF,当且仅当b2ya2x时取“”,故EOF面积的最小值为.