欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020版高考数学大一轮复习 第九章 平面解析几何 高考专题突破5第1课时 范围、最值问题

    • 资源ID:121498       资源大小:281.07KB        全文页数:16页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020版高考数学大一轮复习 第九章 平面解析几何 高考专题突破5第1课时 范围、最值问题

    1、高考专题突破五高考中的圆锥曲线问题第1课时范围、最值问题题型一范围问题例1 (2018鞍山质检)已知椭圆C:1(ab0)与双曲线y21的离心率互为倒数,且直线xy20经过椭圆的右顶点.(1)求椭圆C的标准方程;(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求OMN面积的取值范围.解(1)双曲线的离心率为,椭圆的离心率e.又直线xy20经过椭圆的右顶点,右顶点为点(2,0),即a2,c,b1,椭圆方程为y21.(2)由题意可设直线的方程为ykxm(k0,m0),M(x1,y1),N(x2,y2).联立消去y,并整理得(14k2)x28kmx4(m21

    2、)0,则x1x2,x1x2,于是y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2.又直线OM,MN,ON的斜率依次成等比数列,故k2,则m20.由m0得k2,解得k.又由64k2m216(14k2)(m21)16(4k2m21)0,得0m22,显然m21(否则x1x20,x1,x2中至少有一个为0,直线OM,ON中至少有一个斜率不存在,与已知矛盾).设原点O到直线的距离为d,则SOMN|MN|d|x1x2|m|.故由m的取值范围可得OMN面积的取值范围为(0,1).思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参

    3、数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 (2018浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y24x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x21(x0)上的动点,求PAB面积的取值范围.(1)证明设P(x0,y0),A,B

    4、.因为PA,PB的中点在抛物线上,所以y1,y2为方程24,即y22y0y8x0y0的两个不同的实根.所以y1y22y0,所以PM垂直于y轴.(2)解由(1)可知所以|PM|(yy)x0y3x0,|y1y2|2.所以PAB的面积SPAB|PM|y1y2|.因为x1(1x00,y1y2,y1y2.|AB|,将代入上式得|AB| ,|m|1,SAOB|AB|11,当且仅当|m|,即m时,等号成立,AOB面积的最大值为1.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质

    5、等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟踪训练2 (2018锦州模拟)已知椭圆y21上两个不同的点A,B关于直线ymx对称.(1)求实数m的取值范围;(2)求AOB面积的最大值(O为坐标原点).解(1)由题意知m0,可设直线AB的方程为yxb.由消去y,得x2xb210.因为直线yxb与椭圆y21有两个不同的交点,所以2b220,将AB的中点M代入直线方程ymx,解得b, 由得m.(2)令t,则t2.则|AB|,且O到直线AB的距离为d.设AOB的面积为S(t),所以S(t)|AB|d ,当且仅

    6、当t2时,等号成立,此时满足t2.故AOB面积的最大值为.1.已知P(x0,y0)是椭圆C:y21上的一点,F1,F2是C的两个焦点,若0,则x0的取值范围是()A. B.C. D.答案A解析由题意可知,F1(,0),F2(,0),则(x0)(x0)yxy30,点P在椭圆上,则y1,故x30,解得x0,即x0的取值范围是.2.定长为4的线段MN的两端点在抛物线y2x上移动,设点P为线段MN的中点,则点P到y轴距离的最小值为()A.1 B. C.2 D.5答案B解析设M(x1,y1),N(x2,y2),抛物线y2x的焦点为F,抛物线的准线为x,所求的距离d,所以(两边之和大于第三边且M,N,F三

    7、点共线时取等号).3.过抛物线y2x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角,点A在x轴上方,则|FA|的取值范围是()A. B.C. D.答案D解析记点A的横坐标是x1,则有|AF|x1|AF|cos ,|AF|(1cos ),|AF|.由得1cos ,22(1cos )4,b0)的中心为O,一个焦点为F,若以O为圆心,|OF|为半径的圆与椭圆恒有公共点,则椭圆的离心率的取值范围是()A. B.C. D.答案A解析由于以O为圆心,以b为半径的圆内切于椭圆,所以要使以O为圆心,以c为半径的圆与椭圆恒有公共点,需满足cb,则c2b2a2c2,所以2c2a2,所以e0)上任意一点,M

    8、是线段PF上的点,且|PM|2|MF|,则直线OM的斜率的最大值为()A. B. C. D.1答案A解析由题意可得F,设P(y00),则(),可得k.当且仅当时取得等号,故选A.6.在平面直角坐标系xOy中,已知抛物线C:x24y,点P是C的准线l上的动点,过点P作C的两条切线,切点分别为A,B,则AOB面积的最小值为()A. B.2 C.2 D.4答案B解析设P(x0,1),A(x1,y1),B(x2,y2),又A,B在抛物线上,所以y1,y2.因为y,则过点A,B的切线分别为y(xx1),y(xx2)均过点P(x0,1),则1(x0x1),1(x0x2),即x1,x2是方程1(x0x)的两

    9、根,则x1x22x0,x1x24,设直线AB的方程为ykxb,联立得x24kx4b0,则x1x24b4,即b1,|AB|x1x2|,O到直线AB的距离d,则SAOB|AB|d2,即AOB的面积的最小值为2,故选B.7.椭圆C:y21(a1)的离心率为,F1,F2是C的两个焦点,过F1的直线l与C交于A,B两点,则|AF2|BF2|的最大值等于_.答案7解析因为椭圆C的离心率为,所以,解得a2,由椭圆定义得|AF2|BF2|AB|4a8,即|AF2|BF2|8|AB|,而由焦点弦性质,知当ABx轴时,|AB|取最小值21,因此|AF2|BF2|的最大值等于817.8.(2018沈阳模拟)已知F1

    10、,F2是双曲线1(a0,b0)的左、右焦点,点P在双曲线的右支上,如果|PF1|t|PF2|(t(1,3),则双曲线经过一、三象限的渐近线的斜率的取值范围是_.答案(0,解析由双曲线的定义及题意可得解得又|PF1|PF2|2c,|PF1|PF2|2c,整理得e1,1t3,12,1e2.又e21,03,故00,b0)的左、右焦点分别为F1,F2,过F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若PQF2的周长为16,则的最大值为_.答案解析由题意,得ABF2的周长为32,|AF2|BF2|AB|32,|AF2|BF2|AB|4a,|AB|,324a,

    11、b(0a8),令ta1(1tb0)的一个顶点坐标为B1(0,),离心率为.(1)求椭圆的方程;(2)如图,点P是该椭圆内一点,四边形ABCD(ABCD)的对角线AC和BD交于点P,设直线AB:yxm,记g(m)S,求f(m)g(m)m34m3的最大值.解(1)顶点坐标为B1(0,),b22,椭圆方程为1.(2)联立lAB与椭圆方程整理得3x24mx2m240,488m20,即m20,b0)的右顶点为A,与x轴平行的直线交于B,C两点,记BAC,若的离心率为,则()A. B.C. D.答案B解析e,ca,b2c2a2a2,双曲线方程可变形为x2y2a2.设B(x0,y0),由对称性可知C(x0,

    12、y0),点B(x0,y0)在双曲线上,xya2.A(a,0),(x0a,y0),(x0a,y0),(x0a)(x0a)ya2xy0,即.故选B.14.若点O和点F分别为椭圆1的中心和左焦点,点P为椭圆上的任意一点,则的最小值为_.答案6解析点P为椭圆1上的任意一点,设P(x,y)(3x3,2y2),由题意得左焦点F(1,0),(x,y),(x1,y),x(x1)y2x2x2.3x3,x,2,2,6212,即612.故最小值为6.15.如图,由抛物线y212x与圆E:(x3)2y216的实线部分构成图形,过点P(3,0)的直线始终与图形中的抛物线部分及圆部分有交点,则|AB|的取值范围为()A.

    13、4,5 B.7,8 C.6,7 D.5,6答案B解析由题意可知抛物线y212x的焦点为F(3,0),圆(x3)2y216的圆心为E(3,0),因此点P,F,E三点重合,所以|PA|4,设B(x0,y0),则由抛物线的定义可知|PB|x03,由得(x3)212x16,整理得x26x70,解得x11,x27(舍去),设圆E与抛物线交于C,D两点,所以xCxD1,因此0x01,又|AB|AP|BP|4x03x07,所以|AB|x077,8,故选B.16.(2018南昌测试)已知P是椭圆C:1(ab0)与抛物线E:y22px(p0)的一个公共点,且椭圆与抛物线具有一个相同的焦点F.(1)求椭圆C及抛物

    14、线E的方程;(2)设过F且互相垂直的两动直线l1,l2,l1与椭圆C交于A,B两点,l2与抛物线E交于C,D两点,求四边形ACBD面积的最小值.解(1)P是抛物线E:y22px(p0)上一点,p2,即抛物线E的方程为y24x,F(1,0),a2b21.又P在椭圆C:1上,1,结合a2b21知b23(舍负),a24,椭圆C的方程为1,抛物线E的方程为y24x.(2)由题意可知直线l1斜率存在,设直线l1的方程为yk(x1),A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).当k0时,|AB|4,直线l2的方程为x1,|CD|4,故S四边形ACBD|AB|CD|8.当k0时,直线l2的方程为y(x1),由得(34k2)x28k2x4k2120.x1x2,x1x2.由弦长公式知|AB|x1x2|.同理可得|CD|4(k21).S四边形ACBD|AB|CD|4(k21).令tk21,t(1,),则S四边形ACBD,当t(1,)时,(0,1),248.综上所述,四边形ACBD面积的最小值为8.


    注意事项

    本文(2020版高考数学大一轮复习 第九章 平面解析几何 高考专题突破5第1课时 范围、最值问题)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开