欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    中考冲刺:动手操作与运动变换型问题--巩固练习(基础)

    • 资源ID:122112       资源大小:550.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考冲刺:动手操作与运动变换型问题--巩固练习(基础)

    1、中考冲刺:动手操作与运动变换型问题巩固练习(基础)【巩固练习】一、选择题1. 如图,在RtABC 中,C=90 ,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P.设Q点运动的时间t秒,若四边形QPCP为菱形,则t的值为( ). A. B. 2 C. D.32如图,AB是O的直径,弦BC=2cm,F是弦BC的中点,ABC=60.若动点E以2cm/s的速度从A点出发沿着ABA的方向运动,设运动时间为t(s)(0t3),连接EF,当BEF是直角三角形时,t的值为( ).

    2、A. B. 1 C. 或1 D. 或1或 3. (2015盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿ADCB的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是().ABCD二、填空题4如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP,以AP为边在其左侧作等边APQ ,连结PB、BA.若四边形ABPQ为梯形,则(1)当AB为梯形的底时,点P的横坐标是 ;(2)当AB为

    3、梯形的腰时,点P的横坐标是 . 5如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是 . 6. (2016东河区二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=3其中正确结论的是 三、解答题7如图所示是规格为88的正方形网格,请在所给网格中,按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)在第二象限内的格点上画一点C,使点C与线段A

    4、B组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是_,ABC的周长是_ (结果保留根号);(3)画出ABC以点C为旋转中心、旋转180后的ABC,连接AB和AB,试说出四边形是何特殊四边形,并说明理由8. (1)观察与发现 小明将三角形纸片ABC(ABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到AEF(如图)小明认为AEF是等腰三角形,你同意吗?请说明理由(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图);再沿过点E的直线折叠,使点

    5、D落在BE上的点D处,折痕为EG(如图);再展平纸片(如图)求图中的大小9. 如图(1),已知ABC中,ABBC1,ABC90,把一块含30角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角形板DEF绕D点按逆时针方向旋转 (1)在图(1)中,DE交AB于M,DF交BC于N证明:DMND;在这一旋转过程中,直角三角板DEF与ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积; (2)继续旋转至如图(2)所示的位置,延长AB交DE于M,延长BC交DF于N,DMD

    6、N是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图(3)所示的位置,延长FD交BC于N,延长ED交AB于M,DMDN是否仍然成立?若成立,请写出结论,不用证明10. (2016绵阳)如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(2,0)、(0,),直线DEDC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着ADC的路线向终点C匀速运动,设PDE的面积为S(S0),点P的运动时间为t秒(1)求直线DE的解析式;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)当t为何值时,EPD+DCB=90?并求出此时直线

    7、BP与直线AC所夹锐角的正切值【答案与解析】一、选择题1.【答案】B;【解析】连接PP交BC于点D,若四边形QPCP为菱形,则PPBC,CDCQ=(6-t),BD=6-(6-t)=3+t.在RtBPD中,PB=AB-AP=6-t,而PB=BD,6-t=(3+t),解得:t=2,故选B. 2.【答案】D;【解析】AB是O的直径,ACB=90;RtABC中,BC=2,ABC=60;AB=2BC=4cm.当BFE=90时;RtBEF中,ABC=60,则BE=2BF=2cm;故此时AE=AB-BE=2cm;E点运动的距离为:2cm或6cm,故t=1s或3s;由于0t3,故t=3s不合题意,舍去;所以当

    8、BFE=90时,t=1s;当BEF=90时;同可求得BE=0.5cm,此时AE=AB-BE=3.5cm;E点运动的距离为:3.5cm或4.5cm,故t=1.75s或2.25s;综上所述,当t的值为1、1.75或2.25s时,BEF是直角三角形故选D3.【答案】D.【解析】(1)如图1,当点N在AD上运动时,s=AMAN=t3t=t2(2)如图2,当点N在CD上运动时,s=AMAD=t1=t(3)如图3,当点N在BC上运动时,s=AMBN=t(33t)=t2+t综上可得,能大致反映s与t的函数关系的图象是选项D中的图象故选:D二、填空题4.【答案】(1);(2)0, ; 【解析】(1)由题意知,

    9、当AB为梯形的底时,ABPQ,即PQy轴,又APQ为等边三角形,AC2,由几何关系知,点P的横坐标是.(2)当AB为梯形的腰时,当PBy轴时,满足题意,此时AQ=4,由几何关系得,点P的横坐标是. 5.【答案】4;【解析】由折叠可知BAE=CAE,因为AE=EC所以CAE=ACE,所以BAE=CAE=ACE,三角的和为90,所以ACE=30,所以AC=2AB=4.6.【答案】【解析】正确因为AB=AD=AF,AG=AG,B=AFG=90,ABGAFG;正确因为:EF=DE=CD=2,设BG=FG=x,则CG=6x在直角ECG中,根据勾股定理,得(6x)2+42=(x+2)2,解得x=3所以BG

    10、=3=63=GC;正确因为CG=BG=GF,所以FGC是等腰三角形,GFC=GCF又AGB=AGF,AGB+AGF=180FGC=GFC+GCF,AGB=AGF=GFC=GCF,AGCF;错误过F作FHDC,BCDH,FHGC,EFHEGC,=,EF=DE=2,GF=3,EG=5,EFHEGC,相似比为:=,SFGC=SGCESFEC=344( 3)=3故答案为:三、解答题7【答案与解析】 (1)如图所示建立平面直角坐标系(2)如图画出点C,C(-1,1)ABC的周长是(3)如图画出ABC,四边形ABAB是矩形 理由:CACA,CBCB,四边形ABAB是平行四边形.又CACB,CACACBCB

    11、AABB四边形ABAB是矩形8【答案与解析】解:(1)同意如图所示,设AD与EF交于点G由折叠知,AD平分BAC,所以BADCAD又由折叠知,AGEAGF90, 所以AEFAFE,所以AEAF,即AEF为等腰三角形(2)由折叠知,四边形ABFE是正方形AEB45,所以BED135又由折叠知,BEGDEG,所以DEG67.5从而90-67.522.59【答案与解析】解:(1)连接DB,利用BMDCND或ADMBDN即可证明DMDN由BMDCND知,即在直角三角板DEF旋转过程中,四边形DMBN的面积始终等于,不发生变化 (2)连接DB,由BMDCND可证明DMDN,即DMDN仍然成立 (3)连接

    12、DB由BMDCND,可证明DMND仍成立10【答案与解析】解:由菱形的对称性可得,C(2,0),D(0,),OD=,OC=2,tanDCO=,DEDC,EDO+CDO=90,DCO+CD=90,EDO=DCO,tanEDO=tanDCO=,OE=,E(,0),D(0,),直线DE解析式为y=2x+,(2)由(1)得E(,0),AE=AOOE=2=,根据勾股定理得,DE=,菱形的边长为5,如图1,过点E作EFAD,sinDAO=,EF=,当点P在AD边上运动,即0t,S=PDEF=(52t)=t+,如图2,点P在DC边上运动时,即t5时,S=PDDE=(2t5)=t;S=,(3)设BP与AC相交

    13、于点Q,在菱形ABCD中,DAB=DCB,DEDC,DEAB,DAB+ADE=90,DCB+ADE=90,要使EPD+DCB=90,EPD=ADE,当点P在AD上运动时,如图3,EPD=ADE,EF垂直平分线PD,AP=AD2DF=AD2,2t=5,t=,此时AP=1,APBC,APQCBQ,AQ=,OQ=OAAQ=,在RtOBQ中,tanOQB=,当点P在DC上运动时,如图4,EPD=ADE,EDP=EFD=90EDPEFD,DP=,2t=ADDP=5+,t=,此时CP=DCDP=5=,PCAB,CPQABQ,CQ=,OQ=OCCQ=2=,在RtOBD中,tanOQB=1,即:当t=时,EPD+DCB=90此时直线BP与直线AC所夹锐角的正切值为当t=时,EPD+DCB=90此时直线BP与直线AC所夹锐角的正切值为1


    注意事项

    本文(中考冲刺:动手操作与运动变换型问题--巩固练习(基础))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开