1、备战2020中考数学解题方法专题研究专题9 构造法专题【方法简介】构造法是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。【真题演练】1. (2018桂林)若|3x2y1|+=0,则x,y的值为()ABCD2. (2
2、019湖北天门3分)矩形的周长等于40,则此矩形面积的最大值是 3. (2019浙江衢州4分)如图,人字梯AB,AC的长都为2米。当a=50时,人字梯顶端高地面的高度AD是_米(结果精确到0.1m。参考依据:sin500.77,cos500.64,tan501.19) 4. (2019四川省广安市8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出
3、最省钱的购买方案,并说明理由【名词释义】构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性,常见的构造形式有:1.构造方程;2.构造函数;3.构造图形。【典例示例】例题1:(2019江苏连云港3分)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中C120若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A18m2B18 m2C24 m2Dm2例题2:(2019湖北十堰7分)如图,拦水坝的横断面为梯形ABCD,AD3m,坝高AEDF6m,坡角45,30,求BC的长【归纳总结】(1)等底等高的两个三角形面积相等;(2)等底(或等高)的两三角形面积之比等于其高(
4、或底)之比;(3)在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;(4)若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。【强化巩固】1. 若实数满足(x+y+2)(x+y1)=0,则x+y的值为()A1 B2 C2或1 D2或12. (2018黑龙江龙东)(3.00分)如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90,则四边形ABCD的面积为()A15B12.5C14.5D173. (2015湖南张家界,第2题3分)如图,O=30,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A 相离
5、 B 相交 C 相切 D 以上三种情况均有可能4. (2019甘肃8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AGED交DE于点F,交CD于点G(1)证明:ADGDCE;(2)连接BF,证明:ABFB5. (2018天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元设小明计划今年夏季游泳次数为x(x为正整数)(I)根据题意,填写下表:游泳次数101520x方式一的总费用(元)150175200100+5x方式二的总费用(元)901351809x()若小明计
6、划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?()当x20时,小明选择哪种付费方式更合算?并说明理由6. (2018随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0. =0.777,设x=0.777则10x=7.777得9x=7,解得x=,于是得0. =同理可得0. = =,1. =1+0. =1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0. =,5. =;(2)将0.化为分
7、数形式,写出推导过程;【能力提升】(3)0. 1=,2.0=;(注:0. 1=0.315315,2.0=2.01818)【探索发现】(4)试比较0.与1的大小:0.1(填“”、“”或“=”)若已知0. 8571=,则3. 1428=(注:0. 857l=0.285714285714)7. (2019江苏宿迁10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务图是某品牌共享单车放在水平地面上的实物图,图是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,BCD64,BC60cm,坐垫E与点B的距离BE为15cm(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E,求EE的长(结果精确到0.1cm,参考数据:sin640.90,cos640.44,tan642.05)8. (2019甘肃8分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,切线DE交AC于点E(1)求证:AADE;(2)若AD8,DE5,求BC的长