欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年中考数学专题复习:全等到相似的转化

    • 资源ID:123048       资源大小:2.02MB        全文页数:11页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年中考数学专题复习:全等到相似的转化

    1、全等到相似的转化 知识互联网 题型一:全等到相似的转化(对称型)典题精练 【例1】 已知正方形的边长为,点是射线上的一个动点,连接交射线于点,将沿直线翻折,点落在点处 当时,_, 当时,求的值; 当时(点与点不重合),请写出翻折后与正方形公共部分的面积与的关系式,(只要写出结论,不要解题过程)【解析】 6 ; 如图1,当点在上时,延长交于点,又,设,则,在中,由勾股定理得:,解得; 如图2,当点在延长线上时,延长交于点,同可得设,则在中,由勾股定理,得,解得 当点在上时,; (所求的面积即为的面积,再由相似表示出边长) 当点在延长线上时, 题型二:全等到相似的转化(旋转型)典题精练【例2】 在

    2、和中,、交于点 如图1,则 ,与的数量关系是 ; 如图2,则的度数为 (用含的式子表示),与之间的数量关系是 ;填写你的结论,并给出你的证明; 请你继续完成下面探索:如图3,在和中,则的度数为 (用含的式子表示),与之间的数量关系是 ;填写你的结论,并给予证明【分析】 此题考察学生对共顶点的三角形的全等与相似.解决这里夹角的主要思路是我们常见的模型“八字角”.【解析】 ,相等;,相等; , ,.易证,【例3】 如图,直线与线段相交于点, 点和点在直线上,且. 如图1所示,当点与点重合时 ,且,请写出与的数量关系和位置关系; 将图1中的绕点顺时针旋转到如图2所示的位置,中的与的数量关系和位置关系

    3、是否仍然成立?若成立,请证明;若不成立,请说明理由; 将图2中的拉长为的倍得到如图3,求的值【答案】 ; 仍然成立.证明: 过点作于,过点作于, 延长与的延长线相交点又 过点作于,过点作于易证 , 由知 【例4】 如图,是由绕点顺时针旋转得到的,连结交斜边于点,的延长线交于点 证明:; 设,试探索、满足什么关系时,与是全等三角形,并说明理由 【解析】 证明:是由绕点顺时针旋转得到的, 又 解:当时,在中,在中,即,由知:,.【例5】 如图,正方形的对角线与相交于点,正方形与正方形全等,射线与不过、四点且分别交BC、CD的边于、两点 求证:; 若将原题中的正方形改为矩形,且,其他条件不变,探索线

    4、段与线段的数量关系【解析】 证明:过点作于点,于点.为正方形对角线、的交点,.又在和中 . . 解:当交于点,交于点时. 过点作于点,于点H.MGE=MHF=.M为矩形对角线AC、BD的交点,EMG+GMQ =HMF +GMQ=.EMG =HMF.在MGE和MHF中,MGEMHF. .M为矩形对角线AC、BD的交点,MB=MD=MC又MGBC,MHCD,点G、H分别是BC、DC的中点. ,. .【例6】 如图,是两个全等的等腰直角三角形,的顶点与的斜边的中点重合将绕点旋转,旋转过程中,线段与线段相交于点,线段与射线相交于点(1)如图,当点在线段上,且时,求证:;(2)如图,当点在线段的延长线上

    5、时,求证:;并求当,时,两点间的距离 (用含的代数式表示)【解析】(1)证明:是等腰直角三角形,的中点,在中,;(2)解:连接,是两个全等的等腰直角三角形,即,在中,复习巩固题型一 全等到相似的转化(对称型)【练习1】 如右图,在正方形ABCD中,AB=1,BEAP于E,DFAP于F,若= m(m为常数),则= .【解析】【练习2】 如图,已知,以为边作矩形ABCD,使,过点D作DE垂直OA的延长线交于点EOBCAED 当a为何值时,?请说明理由,并求此时点C到OE的距离 当a为何值时,C到OE的距离是15?【解析】 当时,当时,过作,过作 为矩形又,为正方形, 当时,到的距离是15;, 题型

    6、二 全等到相似的转化(旋转型)【练习3】 现有一副直角三角板,按下列要求摆放: 如图1,固定等腰直角三角板,于,另一个直角三角板的直角顶点与重合,现让三角板绕点旋转,保证、分别交、于点、试探求的值; 如图2,交换两块三角板的位置,固定直角三角板,于,另一个等腰直角三角板的直角顶点与点重合,、分别交、于点,试问的值又将如何变化?【解析】 ,得,由,得,又由,得,故【练习4】 如图1,在中,是边上一点,是边上的一个动点(与点、不重合),与射线相交于点如图2,如果点是边的中点,求证:;如果,求的值.【解析】 如图,连结,那么是等腰直角三角形的斜边上的高根据“角边角”可以证明,从而得到 如图,作,垂足分别为点、,那么与都是等腰直角三角形,因为与都是的余角,所以又因为,所以因此【练习5】 填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧, ,直线AE、BD交于点F 如图1,若,则_;如图2,若,则_; 如图3,若,则_(用含的式子表示); 将图3中的ABC绕点C旋转(点F不与点A、B重合),得图4或图5在图4中,与的数量关系是_;在图5中,与的数量关系是_请你任选其中一个结论证明AAABBBCCCDDDEEEFFF图1图2图3AABBCCDDEEFF图4图5 Q【解析】 ,; ; 图4中:;图5中:的证明如下:如图4,设与的交点为,得11


    注意事项

    本文(2020年中考数学专题复习:全等到相似的转化)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开