欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    高考总复习:知识讲解 离散型随机变量的均值与方差(理)(提高)

    • 资源ID:123255       资源大小:685.50KB        全文页数:15页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考总复习:知识讲解 离散型随机变量的均值与方差(理)(提高)

    1、 离散型随机变量的均值与方差编稿:赵雷 审稿:李霞【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题;【要点梳理】要点一、离散型随机变量的期望1.定义:一般地,若离散型随机变量的概率分布为P则称 为的均值或数学期望,简称期望要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平(2)一般地,在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期

    2、望又称为平均数、均值。(3)随机变量的均值与随机变量本身具有相同的单位2性质:;若(a、b是常数),是随机变量,则也是随机变量,有;的推导过程如下:的分布列为P于是 )。要点二:离散型随机变量的方差与标准差1.一组数据的方差的概念:已知一组数据,它们的平均值为,那么各数据与的差的平方的平均数叫做这组数据的方差。2.离散型随机变量的方差:一般地,若离散型随机变量的概率分布为P则称称为随机变量的方差,式中的是随机变量的期望的算术平方根叫做随机变量的标准差,记作要点诠释:随机变量的方差的定义与一组数据的方差的定义式是相同的;随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与

    3、波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。3.期望和方差的关系:4.方差的性质:若(a、b是常数),是随机变量,则也是随机变量,;要点三:常见分布的期望与方差1、二点分布:若离散型随机变量服从参数为的二点分布,则期望方差证明:,2、二项分布:若离散型随机变量服从参数为的二项分布,即则期望方差期望公式证明:,又,3、几何分布:独立重复试验中,若事件在每一次试验中发生的概率都为,事件第一次发生时所做的试验次数是随机变量,且,称离散型随机变量服从几何分布,记作:。若离散型随机变量服从几何分布,且则期

    4、望方差要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。4、超几何分布:若离散型随机变量服从参数为的超几何分布,则期望要点四:离散型随机变量的期望与方差的求法及应用1、求离散型随机变量的期望、方差、标准差的基本步骤:理解的意义,写出可能取的全部值;求取各个值的概率,写出分布列;P根据分布列,由期望、方差的定义求出、:.注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可2.离散型随机变量的期望与方差的实际意义及应用 离散型随机变量的期望,反映了随机变量取值的平均水平; 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。方差越大

    5、数据波动越大。对于两个随机变量和,当需要了解他们的平均水平时,可比较和的大小。和相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较和,方差值大时,则表明比较离散,反之,则表明比较集中品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关【典型例题】类型一、离散型随机变量的期望例1 已知随机变量X的分布列为:X21012Pm 试求:(1)E(X);(2)若y=2X3,求E(Y) 【思路点拨】 分布列中含有字母m,应先根据分布列的性质,求出m的值,再利用均值的定义求解;对于(2),可直接套用公式,也可以先写出Y的分布列,再求E(Y)【解析】(

    6、1)由随机变量分布列的性质,得,。(2)解法一:由公式E(aX+b)=aE(X)+b,得 解法二:由于Y=2X3,所以y的分布如下:X75311P 。【总结升华】 求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解,对于aX+b型随机变量的期望,可以利用期望的性质求解,当然也可以求出aX+b的分布列,再用定义求解举一反三:【变式1】已知某射手射击所得环数的分布列如下:45678910P0.020.040.060.090.280.290.22求.【答案】 。【变式2】已知随机变量的分布列为210123Pmn其中m,n0,1),且E(),则m,n的值分别为_【答案】,由p

    7、1p2p61,得mn,由E(),得m,m,n.【变式3】随机变量的分布列为:024P0.40.30.3则E(54)等于()A13 B11 C2.2 D2.3【答案】A由已知得E()00.420.340.31.8,E(54)5E()451.8413.【变式4】设离散型随机变量的可能取值为1,2,3,4,且(),则 ;【答案】;由分布列的概率和为1,有,又,即,解得,故。例2. 袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数。求:的概率分布列;的数学期望。【思路点拨】本题求取各个值的概率,其类型显然是古典概型。【解

    8、析】依题意的取值为0、1、2、3、4=0时,取得2黑球,=1时,取得1黑球1白球, ,=2时,取2白球或1红球1黑球,=3时,取1白球1红球,=4时,取2红球,分布列为01234p期望. 【总结升华】求离散型随机变量均值的关键在于列出概率分布表举一反三:【变式1】 随机的抛掷一个骰子,求所得骰子的点数的数学期望【答案】抛掷骰子所得点数的概率分布为123456P所以 123456(123456)3.5抛掷骰子所得点数的数学期望,就是的所有可能取值的平均值【变式2】甲、乙、丙、丁独立地破译一个密码,其中甲的成功率是,乙、丙、丁的成功率都是 (1)若破译密码成功的人数为X,求X的概率分布; (2)求

    9、破译密码成功人数的数学期望【答案】(1)破译密码成功的人数X的可能取值为0,1,2,3,4, 则X的概率分布表为X01234P(2)由(1)知,即破译密码成功的人数的数学期望为1.5【变式3】交5元钱,可以参加一次抽奖,已知一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,抽奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和求抽奖者获利的数学期望 【答案】 抽到的2个球上的钱数之和是个随机变量,其中取每一个值时所代表的随机事件的概率是容易获得的,本题的目标是求参加抽奖的人获利的数学期望,由与的关系为=5,利用公式E()=E()5可获解答 设为抽到的2球钱数之和,则的取值如下

    10、: =2(抽到2个1元),=6(抽到1个1元,1个5元),=10(抽到2个5元)所以,由题意得, 又设为抽奖者获利的可能值,则=5,所以抽奖者获利的期望为 例3 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为,记甲击中目标的次数为X,乙击中目标的次数为Y, (1)求X的概率分布; (2)求X和Y的数学期望【思路点拨】 甲、乙击中目标的次数均服从二项分布【解析】(1),。 所以X的概率分布如下表:X0123P(2)由(1)知,或由题意,。,。【总结升华】 在确定随机变量服从特殊分布以后,可直接运用公式求其均值举一反三:【变式1】 有一批数量很大的商品的次品率为1%,从中

    11、任意地连续取出20件商品,求抽出次品数的期望。【答案】设抽出次品数为,因为被抽商品数量相当大,抽20件商品可以看作20次独立重复试验,所以,所以【变式2】 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望。 【答案】设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则 B(20,0.9), 由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他

    12、们在测验中的成绩的期望分别是: 类型二、离散型随机变量的方差例4已知离散型随机变量的概率分布为1234567P离散型随机变量的概率分布为3738394414243P求这两个随机变量期望、均方差与标准差【解析】;=0.04, .【总结升华】本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中,方差比较清楚地指出了比取值更集中2,=0. 2,可以看出这两个随机变量取值与其期望值的偏差 举一反三:【变式1】已知随机变量的分布列如下表:101P (1)求E(),D(),; (2)设=2+3,求E(),D()【答案】(1);,。(2),。【变式2】 设随机变量X的概率分布为X12nP

    13、 求D(X)。 【答案】 本题考查方差的求法可由分布列先求出X的期望E(X),再利用方差的定义求之也可直接利用公式D(X)=E(X2)E(X)2来解 解法一:,。解法二:由解法一可求得。又,。例5.有一批数量很大的商品的次品率为1%,从中任意地连续取出20件商品,求抽出次品数的期望与方差。【思路点拨】由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响非常小,所以可以认为各次抽查的结果是彼此独立的,可以看作20次独立重复试验利用二项分布的公式解答。【解析】设抽出次品数为,因为被抽商品数量相当大,抽20件商品可以看作20次独立重复试验,所以,所以【总结升华】1. 解答本题的关键是理解

    14、清楚:抽20件商品可以看作20次独立重复试验,即,从而可用公式:,直接进行计算;2.以下抽查问题可以看作独立重复试验:(1)涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题;(2)如果抽样采用有放回地从小数量产品中抽取产品,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件;但从小数量产品中任意抽取产品(即无放回地抽取)每次抽样后次品率将会发生变化,即各次抽样是不独立的,不能看作独立重复试验。举一反三:【变式】若某批产品共100件,其中有20件二等品,从中有放回地抽取3件,求取出二等品的件数的期望、方差。【答案】由题知一次取出二等品的概率为,有放回地抽取3件,可以看作3次独立重

    15、复试验,即取出二等品的件数,所以,.【高清课堂:离散型随机变量的均值与方差 408737 例题1】【变式2】有10件产品,其中3件是次品.从中任取2件,若抽到的次品数为X,求X的分布列,期望和方差.【答案】类型四、离散型随机变量的期望和方差的应用例6 甲、乙两种水稻在相同条件下各种植100亩,收获的情况如下:甲:亩产量300320330340亩数20254015 乙:亩产量310320330340亩数30204010 试评价哪种水稻的质量较好 【思路点拨】 本题是期望与方差的综合应用问题要比较甲、乙两种水稻的质量,需求出其平均亩产量并对其稳定情况进行比较题中只给出了亩产量与亩数关系,所以应先列

    16、出甲、乙两种水稻的亩产量的概率分布,再求其期望与方差 【解析】 设甲、乙两种水稻的亩产量分别为X和Y则,。且,。,即E(X)=E(Y),这表明两种水稻的平均亩产量相同,进一步求各自的方差,得,。 即V(X)V(Y),这说明乙种水稻的产量较为稳定,因此乙种水稻质量较好【总结升华】 期望(均值)仅体现了随机变量取值的平均水平但如果两个随机变量的均值相等,还需比较其方差,方差大说明随机变量的取值较分散(波动大),方差小说明取值较集中、稳定当我们希望实际的平均水平比较理想时,则先求它们的均值,但不要误认为均值相等时,它们都一样好,这时,还应看它们相对于均值的偏离程度,也就是看哪一个相对稳定(即比较方差

    17、的大小),相对稳定者就更好如果我们希望比较稳定时,这时应先考虑方差,再考虑均值是否接近即可举一反三:【变式1】甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等而两个保护区内每个季度发现违反保护条例的事件次数的概率分布分别为甲保护区:X10123P0.30.30.20.2乙保护区:X2012P0.10.50.4 试评定这两个保护区的管理水平【答案】甲保护区的违规次数X1的数学期望和方差分别为:E(X1)=00.3+10.3+20.2+30.2=1.3;D(X1)=(01.3)20.3+(11.3)20.3+(21.3)20.2+(31.3)20.2=1.21 乙保护区的

    18、违规次数置的数学期望和方差分别为: E(X2)=00.1+10.5+20.4=1.3; D(X2)=(01.3)20.1+(11.3)20.5+(21.3)20.4=0.41因为E(X1)=E(X2),D(X1)D(X2),所以两个保护区内每季度平均发生的违规事件次数是相同的,但乙保护区内发生的违规事件次数更集中和稳定,而甲保护区内发生的违规事件次数相对分散,波动较大【变式2】 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元为保护设备,有以下3种方案: 方案1:运走设备,搬

    19、运费为3800元: 方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水; 方案3:不采取措施,希望不发生洪水 试比较哪一种方案好【答案】 要比较哪一种方案好,只要把三种方案的损失的数学期望求出,哪一个小,哪一个方案就好用X1、X2、X3分别表示三种方案的损失 采用方案1:无论有无洪水,都损失3800元,即X=3800 采用方案2:遇到大洪水时,损失2000+60000=62000(元);没有大洪水时,损失2000元,即 同样,采用方案3:有 于是,E(X1)=3800, E(X2)=62000P (X2=62000)+2000P (X2=2000)=620000.01+2000(10.

    20、01)=2600, E(X3)=60000P (X3=60000)+10000P(X3=10000)+0P (X3=0)=600000.01+100000.25=3100采用方案2的平均损失最小,所以方案2好【高清课堂:离散型随机变量的均值与方差 408737 例题4】【变式3】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55.()确定x,y的值,并求顾客一

    21、次购物的结算时间X的分布列与数学期望;&%中国教育出版网*#()若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)【解析】(1)由已知,得所以该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为 X11.522.53PX的数学期望为 .()记A为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则 .由于顾客的结算相互独立,且的分布列都与X的分布列相同,所以 .故该顾客结算前的等候时间不超过2.5分钟的概率为.第15页 共15页


    注意事项

    本文(高考总复习:知识讲解 离散型随机变量的均值与方差(理)(提高))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开