1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师: 授课主题第08讲-代数法解题授课类型T同步课堂P实战演练S归纳总结教学目标 读懂题目表达的意思; 能够快速找出所给题目已知量及未知量; 用之母(x)代替未知量,列方程解题。授课日期及时段T(Textbook-Based)同步课堂知识梳理 解应用题时,用字母代表题中的未知数;参加列式、计算,从而求得未知数的解题方法,叫做代数法;代数法也就是列方程解应用题的方法;为顺利地学好用代数法解应用题,应注意以下几个问题;1、切实理解题意。找出题目中已知量及未知量。2、在切实理解题意的基础上,用字母代表题中(设)未
2、知数。3、根据等量关系列方程。要根据应用题中数量之间的等量关系列出方程。列方程要同时符合三个条件:(1)等号两边的式子表示的意义相同;(2)等号两边数量的单位相同;(3)等号两边的数量相等。 如果一道应用题的数量有几个相等的关系,并且每一个都可以作为列方程的依据,这时要选择最简便、最明确的等量关系列出方程。典例分析 例1、某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有合格,两种零件合格的共有42个,两种零件个生产了多少个? 例2、六年级甲班比乙班少4人,甲班有的人、乙班有的人参加课外数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?例3
3、、阅览室看书的学生中,男生比女生多10人,后来男生减少,女生减少,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?例4、甲、乙两校共有22人参加竞赛,甲校参加人数的比乙校参加人数的少1人,甲、乙两校各有多少人参加?例5、王师傅和李师傅共加工零件62个,王师傅加工零件个数的比李师傅的少2个,两人各加工了多少个?例6、甲书架上的书是乙书架上的,两个书架上各借出154本后,甲书架上的书是乙书架上的,甲、乙两书架上原有书各多少本? 例7、一个班女同学比男同学的多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等。这个班男、女生各有多少人?P(Practice-Oriented)实战演
4、练实战演练 课堂狙击1、某校参加数学竞赛的女生比男生多28人,男生全部得优,女生的得优,男、女生得优的一共有42人,男、女生参赛的各有多少人?2、某小学去年参加无线电小组的同学比参加航模小组的同学多5人。今年参加无线电小组的同学减少,参加航模小组的人数减少,这样,两个组的同学一样多。去年两个小组各有多少人?3、原来甲、乙两个书架上共有图书900本,将甲书架上的书增加,乙书架上的书增加,这样,两个书架上的书就一样多。原来甲、乙两个书架各有图书多少本?4、学校图书馆买来文艺书和连环画共126本,文艺书的比连环画的少7本,图书馆买来的文艺书和连环画各是多少本?5、儿子今年的年龄是父亲的,4年后儿子的
5、年龄是父亲的,父亲今年多少岁?6、某学校的男教师比女教师的多8人。如果女教师减少4人,男教师增加8人,男、女教师人数正好相等。这个学校男、女教师各有多少人?7、某工厂第一车间的人数比第二车间的人数的少30人。如果从第二车间调10人到第一车间,则第一车间的人数就是第二车间的。求原来每个车间的人数?8、有一个分数,如果分母加上3,分子不变,约分后为,如果分子加上4,原分母不变,约分后为,求原分数。 课后反击1、有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中的 是红球,已知红球一共有69个,两盒球共有多少个?2、某车间昨天生产的甲种零件比乙种零件多700个。今天生产的甲种零件比昨天少
6、,生产的乙种零件比昨天增加,两种零件共生产了2065个。昨天两种零件共生产了多少个? 3、某小有学生465人,其中女生的比男生的少20人,男、女生各有多少人?4、某校六年级男生是女生人数的,后来转进2名男生,转走3名女生,这时男生人数是女生的。原来男、女生各有多少人? 5、第一车间人数的等于第二车间人数的,第一车间比第二车间多50人。两个车间各有多少人?6、某无线电厂有两个仓库。第一仓库储存的电视机是第二仓库的3倍。如果从第一仓库取出30台,存入第二仓库,则第二仓库就是第一仓库的。两个仓库原来各有电视机多少台?7、如图为两互相咬合的齿轮大的是主动轮,小的是从动轮大轮半径为105,小轮半径为90
7、,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?8、学校买来长跳绳和短跳绳共60根,长跳绳的比短跳绳的少7根,学校买来长跳绳和短跳绳各多少根?S(Summary-Embedded)归纳总结名师点拨 为顺利地理解用代数法解应用题,应注意以下几个问题; 1、切实理解题意。通过读题,要明白题中讲的是什么意思,有哪些已知条件,未知条件是什么,已知条件与未知条件之间是什么关系。 2、在切实理解题意的基础上,用字母代表题中(设)未知数。通常用字母x代表未知数,题目问什么就用x代表什么。有些练习题在用代数法解答时,不能题中问什么都用x表示。 只表示题中另一个合适的未知数,这样才能顺利列出方程,求出所设的未知数。然后通过计算,求出题目要求的那个未知量。如果一道题要求两个或两个以上的未知数,这就要根据题目的具体情况,从思考容易、计算方便着眼,灵活选择一个用x表示,其他未知数用含有x的代数式表示。 3、根据等量关系列方程。要根据应用题中数量之间的等量关系列出方程。列方程要同时符合三个条件:(1)等号两边的式子表示的意义相同;(2)等号两边数量的单位相同;(3)等号两边的数量相等。 如果一道应用题的数量有几个相等的关系,并且每一个都可以作为列方程的依据,这时要选择最简便、最明确的等量关系列出方程。 学霸经验 本节课我学到了 我需要努力的地方是