1、学科教师辅导讲义学员编号: 年 级:五年级 课 时 数:3学员姓名:辅导科目:奥数学科教师:授课主题 第05讲 长方形、正方形的面积授课类型T同步课堂P实战演练S归纳总结教学目标 熟悉掌握基本图形面积的求法。 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、基本公式 长方形的面积=长宽 正方形的面积=边长边长掌握并能运用这两个面积公式,就能计算它们的面积。 但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能
2、简单地用公式直接求出面积的题目。这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。二、方法技巧 对于基本的长方形和正方形图形,可以直接用公式求出它们的面积。对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算的公式求解。 典例分析 考点一:分解法例1、把一张长4米、宽3米的长方形木板,锯成一个面积最大的正方形木板,这个正方形木板的面积是多少平方米?例2、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。求大、小
3、正方形的面积各是多少平方厘米? 例3、求下面图形的面积。(单位:厘米) 例4、下图中大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形多96平方厘米。大正方形和小正方形的面积各是多少? 考点二:平移法例1、已知两相同的长方形ABCD和DFEG的长是6,求阴影部分的面积 例2、把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?例3、有一块菜地长16米,宽8米。菜地中间留了2条宽2米的路,把菜地平均分成了4块,每一块地的面积是多少? 考点三:合并法例1、一个正方形中套着一个长方形。已知正方形的边长是16分米,长方形4个
4、角的顶点恰好把正方形四条边都分成两段,其中长的一段是短的3倍。阴影部分的面积是多少? 例2、一个长方形与一个正方形部分重合(如图),求两块阴影部分的面积相差多少?(单位:厘米) P(Practice-Oriented)实战演练实战演练 课堂狙击1、将一块长3米,宽2米的长方形布剪成一块面积最大的正方形布,剩下部分的面积是多少平方米?2、计算下图的面积。 30-20=10 3、一个边长为8厘米的正方形,依次连接4边中点得到第二个正方形,这样继续下去可以得到第三个、第四个、求第四个正方形的面积。 4、长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积的和
5、是68平方米,求长方形ABCD的面积 5、正方形ABCD的边长4厘米,求长方形EFGD的面积 6、一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。 课后反击1、下图是一个养鸡专业户用一段长24米的篱笆围成一个长方 形的养鸡场,其中一面利用墙,求占地面积有多大? 2、三角形EBC的面积是40平方厘米,且阴影部分面积比三角 形EFG的面积大10平方厘米。求平行四边形ABCD的面积。 3、如下图,一块正方形玉米田,边长是9米。中间有两条1 米宽的小路。求种着玉米的土地的面积(图中阴影部分的面积) 8 84、长方形草地ABCD被分为面积相等的甲、乙、丙和丁四份(如右图),其中图形甲的长和宽的比是a:b=2:1,其中图形乙的长和宽的比是多少? 直击赛场 1、如下图所示,BD,CF将长方形ABCD分成4块,DEF的面积是4,CED的面积是6 。问:四边形ABEF的面积是多少? S(Summary-Embedded)归纳总结重点回顾 分解、平移、合并三种方法的运用名师点拨 对于基本的长方形和正方形图形,可以直接用公式求出它们的面积。对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算的公式求解。学霸经验 本节课我学到 我需要努力的地方是