欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    九年级下册数学升学课程讲义第03讲-圆(培优)-学案

    • 资源ID:126615       资源大小:371.80KB        全文页数:12页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    九年级下册数学升学课程讲义第03讲-圆(培优)-学案

    1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-圆 授课类型T同步课堂P实战演练S归纳总结教学目标 理解圆的定义与点与圆的位置关系及圆的对称性;熟练掌握圆心角、弦、弧之间的关系; 熟练掌握圆周角定理及其推论; 掌握圆内接四边形、正多边形的性质;掌握圆外接、内切三角形的性质; 掌握圆与直线的位置关系判定及切线的性质与判定; 理解切线长定理并进行弧、扇形等圆的相关计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建 知识概念(一)圆的定义,点与圆的位置关系1、在同一平面内,一条线段OP绕它固定的一个端点O旋转一周

    2、,另一个端点P所形成的图形叫做圆。定点O就是圆心,线段OP就是圆的半径,以点O为圆心的圆记作,读作“圆O”。2、平面上到定点的距离等于定长的所有点组成的图形叫做圆。其中,定点就是圆心,定长就是半径。3、点在圆内d r; 点在圆上d = r; 点在圆外d r(二)圆心角、弧、弦之间的关系1、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等2、推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等三项中有一项成立,则其余对应的两项也成立(三)垂径定理1、内 容:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧2、逆 定 理:平分弦(不是直径)的直径垂直于这条弦

    3、,并且平分这条弦所对的两段弧3、推 论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 在同圆或者等圆中,两条平行弦所夹的弧相等 4、使用条件:一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论 (1)平分弦所对的弧;(2)平分弦 (不是直径);(3)垂直于弦;(4)经过圆心(四)圆周角的定义与圆周角定理1、圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、推论:半圆(或直径)所对的圆周角是直角,90

    4、的圆周角所对的弦是直径(五)圆内接四边形1、圆内接四边形的性质:圆内接四边形的对角互补 圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角) (六)确定圆的条件1、条件:不在同一直线上的三点确定一个圆(七)三角形的外接圆1、外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆2、外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心 锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部(八)直线与圆的位置关系判定:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr; 直线l和O相切d=r; 直线l和O相

    5、离dr(九)切线的性质圆的切线垂直于经过切点的半径经过圆心且垂直于切线的直线必经过切点经过切点且垂直于切线的直线必经过圆心1、注意:切线的性质可总结如下: 如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:直线过圆心; 直线过切点; 直线与圆的切线垂直2、切线性质的运用(常作辅助线)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直(十)切线的判定定理1、切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线2、在应用判定定理时注意:(常用解题思路)“无交点,作垂线段,证半径”; “有交点,作半径,证垂直

    6、”(十一)三角形的内切圆与内心 1、内切圆的有关概念:三角形的内心就是三角形三个内角角平分线的交点2、任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形3、三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角(十二)切线长定理1、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角2、切线长定理包含着一些隐含结论 垂直关系三处;全等关系三对;弧相等关系两对,在一些证明求解问题中经常用到 (十三)圆的相关计算1、弧长公式:2、扇形面积公式:考点一: 圆的定义、点与圆的位置关系例1、列说法:弧分为优弧

    7、和劣弧;半径相等的圆是等圆;过圆心的线段是直径;长度相等的弧是等弧;半径是弦,其中错误的个数为()A2 B3 C4 D5例2、A、B是半径为5cm的O上两个不同的点,则弦AB的取值范围是()AAB0 B0AB5 C0AB10 D0AB10考点二: 圆心角、弧、弦的关系例1、在同圆或等圆中,下列说法错误的是()A相等弦所对的弧相等 B相等弦所对的圆心角相等C相等圆心角所对的弧相等 D相等圆心角所对的弦相等例2、如图,AB是O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交O于点C,连结AC、BC、OB、OC若ABC=65,则BOC的度数是()A50 B65 C100 D130考点三: 垂

    8、径定理及推论例1、如图,O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则O的半径为()A1 B C D例2、如图所示为圆柱形大型储油罐固定在U型槽上的横截面图已知图中ABCD为等腰梯形(ABDC),支点A与B相距8m,罐底最低点到地面CD距离为1m设油罐横截面圆心为O,半径为5m,D=56,求:U型槽的横截面(阴影部分)的面积(参考数据:sin530.8,tan561.5,3,结果保留整数)考点四: 圆周角与圆心角关系及圆内接四边形例1、如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜

    9、的半径是()Acm B5cm C6cm D10cm例2、如图,圆内接四边形ABCD的两组对边的延长线分别相较于点E,F,若A=55,E=30,则F=()A25 B30 C40 D55考点五: 直线和圆的位置关系例1、已知O的面积为3,则其内接正三角形的面积为()A9 B C D例2、如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点E,若A=30,则sinE的值为()A B C D例3、如图所示,在梯形ABCD中,ADBC,ABBC,以AB为直径的O与DC相切于E已知AB=8,边BC比AD大6(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点

    10、的三角形与BCP相似?若存在,求出AP的长;若不存在,请说明理由考点六:切线长定理和圆的相关计算 例1、已知正六边形的边长为2,则它的内切圆的半径为()A1 B C2 D2例2、如图,在55的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90得到AOB,则A点运动的路径的长为()A B2 C4 D8例3、如图,在RtABC中,A=30,BC=2,以直角边AC为直径作O交AB于点D,则图中阴影部分的面积是()A BC D例4、如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE(1)求证:DE是O的切线;

    11、(2)若AE=6,D=30,求图中阴影部分的面积P(Practice-Oriented)实战演练实战演练 课堂狙击1、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A3 B4 C5 D62、下列五个命题:(1)两个端点能够重合的弧是等弧;(2)圆的任意一条弧必定把圆分成劣弧和优弧两部分(3)经过平面上任意三点可作一个圆;(4)任意一个圆有且只有一个内接三角形(5)三角形的外心到各顶点距离相等其中真命题有()A1个 B2个 C3个 D4个3、在平面直角坐标系xOy中,经过点(sin

    12、45,cos30)的直线,与以原点为圆心,2为半径的圆的位置关系是()A相交 B相切 C相离 D以上三者都有可能4、如图,如果直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长是()A2 B8 C2 D25、下列命题中为真命题的是()A有一个角是40的两个等腰三角形相似 B三点一定可以确定一个圆C圆心角的度数相等,则圆心角所对的弧相等 D三角形的内心到三角形三边距离相等6、如图,AB是半圆O的直径,AC为弦,ODAC于D,过点O作OEAC交半圆O于点E,若AC=12,则OF的长为()A8 B7 C6 D47、如图,在ABC中,A=90,AB=AC=2,点O是

    13、边BC的中点,半圆O与ABC相切于点D、E,则阴影部分的面积等于()A1 B C1 D8、如图,在ABC中,C=90,D、F是AB边上的两点,以DF为直径的O与BC相交于点E,连接EF,过F作FGBC于点G,其中OFE=A(1)求证:BC是O的切线;(2)若sinB=,O的半径为r,求EHG的面积(用含r的代数式表示) 课后反击1、下列说法:相等的圆心角所对的弧相等;相等的弧所对的弦相等;相等的弦所对的弧相等;半径相等的两个半圆是等弧,其中正确的个数有()A1个 B2个 C3个 D4个2、在RtABC中,C=90,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()

    14、A相交 B相切 C相离 D不能确定3、如图,在O中,已知=,则AC与BD的关系是()AAC=BD BACBD CACBD D不确定4、如图,在55正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A(0,0) B(1,1) C(1,0) D(1,1)5、如图,O的直径AB=10,C是AB上一点,矩形ACND交O于M,N两点,若DN=8,则AD的值为()A4 B6 C2 D36、如图,线段AB是O的直径,弦CDAB,CAB=40,则ABD与AOD分别等于()A40,80 B50,100 C50,80 D40,1007、

    15、如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B小圆的切线AC与大圆相交于点D,且CO平分ACB(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积直击中考1、【2016达州】如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则tanOBC为()A B2 C D2、【2016聊城】如图四边形ABCD内接于O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为()A

    16、45 B50 C55 D603、【2016临沂】如图,AB是O的切线,B为切点,AC经过点O,与O分别相交于点D,C若ACB=30,AB=,则阴影部分的面积是()A B C D4、【2016锦州】如图,已知ABC,ACB=90,ACBC,点D为AB的中点,过点D作BC的垂线,垂足为点F,过点A、C、D作O交BC于点E,连接CD、DE(1)求证:DF为O的切线;(2)若AC=3,BC=9,求DE的长S(Summary-Embedded)归纳总结重点回顾1、 利用圆心角、弦、弧的关系和圆周角定理及其推论等知识解决关于圆的性质相关的问题;2、 综合运用圆的知识解圆的相关计算。名师点拨本单元内容较多,熟练理解并识记相关性质定理是学好本单元的前提,多练是根本,善于总结是成绩提高的保障。学霸经验 本节课我学到 我需要努力的地方是12


    注意事项

    本文(九年级下册数学升学课程讲义第03讲-圆(培优)-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开