欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    著名机构数学讲义春季13-八年级基础版-梯形及中位线-学生版

    • 资源ID:129162       资源大小:377.08KB        全文页数:10页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    著名机构数学讲义春季13-八年级基础版-梯形及中位线-学生版

    1、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 梯形及中位线 知识模块知识模块:梯形相关概念梯形相关概念 梯形及中位线 1、梯形梯形:一组对边平行而另一组对边不平行的四边形叫做梯形 底底:平行的两边叫做底,其中较长的是下底,较短的叫上底 腰腰:不平行的两边叫做腰 高高:梯形两底之间的距离叫做高 2、特殊梯形特殊梯形 直角梯形:直角梯形:一腰垂直于底的梯形叫做直角梯形 特殊梯形 等腰梯形:等腰梯形:两腰相等的梯形叫做等腰梯形 注意:如果同时具备直角梯形和等腰梯形的特征,那么该图形是矩形 3、等腰梯形性质定理等腰梯形性质定理 (1)等腰梯形在同一底上的两个内角相等 (2)等腰梯

    2、形的两条对角线相等 (3)等腰梯形是轴对称图形; 4、等腰梯形的判定定理、等腰梯形的判定定理 (1)在同一底边上的两个内角相等的梯形是等腰梯形 (2)对角线相等的梯形是等腰梯形 【例 1】如图,在等腰梯形 ABCD 中,ADBC,对角线 AC,BD 相交于点 O,有如下四个结论:AC BD; ACBD; 等腰梯形 ABCD 是中心对称图形; AOBDOC则正确的结论是 ( ) A、 B、 C、 D、 【例 2】已知:如图,AM 是ABC 的中线,D 是线段 AM 的中点,AMAC,AEBC 求证:四边形 EBCA 是等腰梯形 D M AE B C 【例 3】如图,梯形 OABC 中,O 为直角

    3、坐标系的原点,A、B、C 的坐标分别为(14,0)、 (14,3)、(4,3)点 P、Q 同时从原点出发,分别作匀速运动,点 P 沿 OA 以每秒 1 个单位 向终点 A 运动,点 Q 沿 OC、CB 以每秒 2 个单位向终点 B 运动当这两点中有一点到达自己的终 点时,另一点也停止运动 (1)设从出发起运动了 x 秒,当 x 等于多少时,四边形 OPQC 为平行四边形? (2)四边形 OPQC 能否成为等腰梯形?说明理由 知识模块知识模块:解决梯形问题常用解决梯形问题常用辅助线辅助线 作法 图形 平移腰,转化为三角平移腰,转化为三角 形、平行四边形形、平行四边形 E A B C O P Q

    4、x y F 作高,转化为直角三作高,转化为直角三 角形、矩形角形、矩形 延长两腰,转化为三 角形 平移对角线,转化为平移对角线,转化为 三角形、平行四边形三角形、平行四边形 联结顶点与腰上的中 点,构造全等三角形 【例 4】在梯形 ABCD 中,ADBC,其中 AB4,CB8,AD2,则腰 CD 的取值范围是_ 【例 5】如图,梯形 ABCD 中,ADBC,且BC90,E、F 分别是两底的中点,联结 EF,若 AB8,CD6,则 EF 的长为 【例 6】 如图, 在等腰梯形 ABCD 中, ADBC, ABCD, 对角线 ACBD 交于点 O, 其中梯形高为32 D B A CE D B A

    5、C F ED BC A HGF ED BC A cm,则梯形面积是_cm2 【例 7】如图,在梯形 ABCD 中,ADBC,E 是 CD 的中点,且 ABAE若 AB5,AE6,则梯形 上下底之和为 【例 8】如图,梯形 ABCD 中,ADBC,B45,C120,AB8,则 CD 的长是 【例 9】如图,在ABC中,点 D 是边 BC 的中点,点 E 在ABC内,AE 平分BAC,CEAE, 点 F 在边 AB 上,EF/BC (1) 求证:四边形 BDEF 是平行四边形; (2) 线段 BF、AB、AC 之间有怎么样的数量关系?并证明 E O C B A D F E O C B A D C

    6、E B AD C E F B AD D A B C FE D A B C A B C D E F G E F AD B C 知识模块知识模块:三角形中位线的定义和性质三角形中位线的定义和性质 1. 定义三角形的中位线:联结三角形两边中点的线段,(强调它与三角形的中线的区别); 2. 三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半. 3. 梯形中位线定理: 梯形的中位线平行于底边,并且等于两底和的一半. 【例 10】 (1)顺次联结四边形各边中点所组成的四边形是; (2)顺次联结平行四边形各边中点所组成的四边形是; (3)顺次联结矩形各边中点所得到的四边形是; (4)顺次联结正

    7、方形各边中点所得到的四边形是; (5)顺次联结菱形各边中点所得到的四边形是; (6)顺次联结对角线互相垂直的四边形各边中点所得到的四边形是; (7)顺次联结等腰梯形各边中点所得到的四边形是; (8)顺次联结对角线相等的四边形各边中点所得到的四边形是; (9)顺次联结对角线相等且互相垂直的四边形各边中点所得到的四边形是 【例 11】在梯形 ABCD 中,EF 分别是对角线 BD 和 AC 的中点,求证: 1 () 2 EFBCAD E D CB A FE D B C A 【例 12】如图,在ABC 中,点 D 是边 BC 的中点,点 E 在ABC 内,AE 平分BAC 内,CEAE, 点 F 在

    8、边 AB 上,EFBC (1)求证:四边形 BDEF 是平行四边形; (2)线段 BF、AB、AC 的数量之间具有怎样的关系?证明你所得到的结论 【习题 1】直角梯形一腰长为 12cm,这条腰和一个底边所成的角为 60,则另一腰长为 _cm,若上底为 3cm,则梯形的面积为_ 【习题 2】如右图,在等腰梯形 ABCD 中,ADBC,AC,BD 相交于点 O,有下列四个结论: (1)AC=BD;(2)梯形 ABCD 是轴对称图形;(3)ADB=DAC; (4)AODABO其中正确的有( ) A1 个 B2 个 C3 个 D4 个 A B C D O 【习题 3】已知梯形ABCD中,/ /ADBC

    9、,70B,40C,2AD ,10BC 求DC的长 【习题 4】如图,在等腰三角形 ABC 中,点 D、E 分别是两腰 AC、BC 上的点,联结 BE、CD 相交于点 O,1=2 求证:梯形 BDEC 是等腰梯形 【习题 5】如图,四边形 ABCD 是梯形,BDAC,且 BDAC,若 AB2,CD4,求梯形 ABCD 的 面积。 A B C D E A B D C E O 1 2 F G E H A B C D G F E B D C A ED BC A 【习题 6】如图,在四边形 ABCD 中,E、F、G、H 分别是边 AB、BC、CD、DA 的中点,依次联结各 边中点得到的中点四边形 EFGH这个中点四边形 EFGH 的形状为 ;说明理由 【习题 7】如图,梯形 ABCD 中,ABCD,点 E、F、G 分别是 BD、AC、DC 的中点已知两底的差 是 8,两腰和是 12,求EFG 的周长。 【习题 8】如图,已知 BE、CD 分别是ABC 的角平分线,并且 AEBE 于 E 点,ADDC 于 D 点 求证: (1)DEBC; (2)DE 1 2 (AB+ACBC)


    注意事项

    本文(著名机构数学讲义春季13-八年级基础版-梯形及中位线-学生版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开