欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    著名机构讲义春季10-八年级培优版-平行四边形的判定-教师版

    • 资源ID:129177       资源大小:561.40KB        全文页数:12页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    著名机构讲义春季10-八年级培优版-平行四边形的判定-教师版

    1、F E C A B D 教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 平行四边形的判定 知识模块:知识模块:平行四边形的判定定理平行四边形的判定定理 1、两组对边分别相等的四边形是平行四边形 2、一组对边平行且相等的四边形是平行四边形 3、两组对角分别相等的四边形是平行四边形 4、对角线互相平分的四边形是平行四边形 【例 1】已知;如图,ABC 是等边三角形,D、F 分别为 CB、BA 上的点,且 CD=BF,以 AD 为边作等 平行四边形的判定 F E D B A C 边ADE. 求证:四边形 CDEF 为平行四边形. 【答案】联结 BE,易证EABDAC,易得 CD=

    2、EF, BEF 为等边三角形,EFB=ABC=60,从而 EF/DC, 所以四边形 CDEF 为平行四边形. 【例 2】已知:如图,在四边形 ABCD 中,AB/CD,以 AC、AD 为边做一个平行四边形 ACED.联结 BE,DC 的延长线交 BE 于点 F. 求证:EF=FB 【答案】过点 F 作 FG/AD,然后证ECFFGB 即可. 【例 3】如图,已知四边形 ABCD 为平行四边形,AEBD 于 E,CFBD 于 F (1)求证:BE=DF; (2)若 M、N 分别为边 AD、BC 上的点,且 DM=BN,试判断四边形 MENF 的形状(不必说明理由) 【答案】 (1)四边形 ABC

    3、D 是平行四边形, AB=CD,ABCD, ABD=CDB, AEBD 于 E,CFBD 于 F, AEB=CFD=90, ABECDF(AAS ) , BE=DF; (2)四边形 MENF 是平行四边形 证明:有(1)可知:BE=DF, 四边形 ABCD 为平行四边行, ADBC, MDB=MBD, DM=BN, DNFBNE, NE=MF,MFD=NEB, MFE=NEF, MFNE, 四边形 MENF 是平行四边形 【例 4】如图,在ABCD 中,DAB60,点 E、F 分别在 CD、AB 的延长线上,且 AEAD,CF CB (1)求证:四边形 AFCE 是平行四边形; (2)若去掉已

    4、知条件的“DAB60”,上述的结论还成立吗?若成立,请写出证明过程;若不成 立,请说明理由 【答案】 (1)证明:四边形 ABCD 是平行四边形, DCAB,DCBDAB60 ADECBF60 AEAD,CFCB, AED,CFB 是正三角形 AECBFC60,EAFFCE120 四边形 AFCE 是平行四边形 (2)解:上述结论还成立 证明:四边形 ABCD 是平行四边形, DCAB,CDACBA,DCBDAB,ADBC,DCAB ADECBF AEAD,CFCB, AEDADE,CFBCBF AEDCFB 又ADBC, 在ADE 和CBF 中ADECBF,AEDCFB,ADBC ADECB

    5、F(AAS) AEDBFC,EADFCB 又DABBCD, EAFFCE四边形 EAFC 是平行四边形 【例 5】在等边ABC 中,AB8,点 D 在边 BC 上,ADE 为等边三角形,且点 E 与点 D 在直线 AC 的两侧,过点 E 作 EF/BC,EF 与 AB、AC 分别相交于点 F、G (1)如图,求证:四边形 BCEF 是平行四边形; (2)设 BDx,FGy,求 y 关于 x 的函数解析式,并写出定义域; (3)如果 AD 的长为 7 时,求线段 FG 的长 O B D F A C E G F C A B D E 【答案】(1)证明:ABC 和ADE 是等边三角形, ABAC,A

    6、DAE,BACDAE60 BADCAEBADCAE BACB60 ,ACEB60 ,BCE120 BBCE180 ,BF/CE EF/BC,四边形 BCEF 是平行四边形 (2)解:四边形 BCEF 是平行四边形,BADCAE,BFCEBDx,EF/BC, AGFACB60 FAG, FGAF8x, y 关于 x 的函数解析式为8yx,定义域为08x (3)解:过点 A 作 AHBC,垂足为 H, BH 1 2 BC8, 22222 8448AHADBH, DH 222 7481ADAH 当4 13xBHDH 时,FG835 当4 1 5xBHDH 时,FG853 知识模块:知识模块:平行四边

    7、形的存在性问题平行四边形的存在性问题 【例 6】已知平面内有两点 A(1,0)、B(3,0),P 点在 y 轴上,M 点在直线1yx 上,若以 A、B、P、M 为顶点的四边形是平行四边形,求 M 点的坐标 【答案】(2,1)或(-4,-5)或(4,3) 【例 7】如图,在平面直角坐标系中,点 A 的坐标为 A(3, 0),点 B 的坐标为 A(0, 4) (1)求直线 AB 的解析式; (2)点 C 是线段 AB 上一点,点 O 为坐标原点,点 D 在第二象限,且四边形 BCOD 为平行四边形,且 BC=BD,求点 D 坐标; (3)在(2)的条件下,点 E 在 x 轴上,点 P 在直线 AB

    8、 上,且以 B、D、E、P 为顶点 的四边形是平行四边形,请写出所有满足条件的点 P 的坐标 【答案】 (1)设 AB 的解析式为 y=kx+b, 代入点 A(3,0) ,B(0,4) , 得直线 AB 的解析式为: 4 4 3 yx ; (2)平行四边形 BCOD 中,BC=BD, OB 垂直平分 CD, 点 C 的纵坐标是 2,代入 AB 的解析式得 C( 3 2 ,2) , D( 3 2 ,2) ; (3)当 BD 为对角线时, 3 (6) 2 P ,; 当 BE 为对角线时, 3 (2) 2 P,; 当 BP 为对角线时, 9 (2) 2 P,; 综上所述,P 点的坐标为 9 (2)

    9、2 ,或 3 (2) 2 ,或 3 (6) 2 , 知识模块:知识模块:动点问题,判定边角关系动点问题,判定边角关系 【例 8】如图,平行四边形 ABCD 中,4ABcm,8BCcm,ABBC,AC的垂直平 分线EF分别交AD、BC于点E、F,垂足为O.如图,动点P、Q分别从A、C两点同时出发, 沿AFB和CDE各边匀速运动一周.即点P自AFBA停止, 点Q自CDEC停 止.在运动过程中, (1)已知点 P 的速度为每秒 5cm,点Q的速度为每秒 4cm,运动时间为t秒,当A、 C、P、Q四点为顶点的四边形是平行四边形时,求t的值; (2)若点P、Q的运动路程分别为a、b(单位:cm,0ab

    10、) ,已知A、C、P、Q A B O x y 四点为顶点的四边形是平行四边形,求a与b满足的数量关系式 【答案】(1)平行四边形 ABCD 中,ABBC, 四边形 ABCD 是矩形 AD/BC, CAD=ACB,AEF=CFE EF 垂直平分 AC,垂足为 O, OA=OC AOECOF, OE=OF 四边形 AFCE 是平行四边形 又EFAC, 四边形 AFCE 是菱形 设菱形边长 AF=CF=x,则 BF=8-x, 在直角ABF 中,AB=4,由勾股定理,得:42+(8-x)2=x2 解得:x=5,即 AF=5 当点 P 在 AF 上时,Q 点在 CD 上,此时 A、C、P、Q 四点不能构

    11、成平行四边形, 同理 P 点在 AB 上,Q 点在 DE 或 CE 上或 P 点在 BF,Q 在 CD 时不构成平行四边形, 因此只有当 P 点在 BF 上,Q 点在 ED 上时,才能构成平行四边形, 以 A、C、P、Q 四点为顶点的四边形是平行四边形时,PC=QA 点 P 的速度为 5cm 每秒,Q 的速度是每秒 4cm,设运动时间为 t, PC=5t,QA=CD+AD-4t AB=CD=4cm,AD=BC=8cm QA=4+8-4t=12-4t 5t=12-4t,t= 4 3 , 以 A、C、P、Q 为顶点的四边形是平行四边形时,t= 4 3 ; (2)当 P 点在 AF,Q 点在 CE

    12、上时,AP=CQ,a=12-b,得12ab; 当点 P 在 BF 上,Q 在 DE 上时,AQ=CP,即 12-b=a,得12ab; 当 P 点在 AB,Q 点在 CD 上时,AP=CQ,及 12-a=b,得12ab; 综上所述,a 与 b 满足的数量关系是12ab(0ab ) 【例 9】如图,ABCD 中,DEAB 于 E,BC=2AB,M 是 BC 的中点 试求EMC 与BEM 的数量关系 【答案】EMC=3BEM 延长 EM 与 DC 的延长线交于点 N,连接 DM A B C D E F P Q A B C D E M N 则易得BEMNCM,所以 EM=MN 又 AB/CD,DEAB

    13、,则EDN=90, BEM=N, ME=MN=DM EMD=2N=2BEM 由 MC=CD,得MDC=CMD=N, EMC=3BEM 【例 10】如图 1,P 为 RtABC 所在平面内任意一点(不在直线 AC 上) ,ACB=90, M 为 AB 边中点 操作: 以 PA、 PC 为邻边作平行四边形 PADC, 连接 PM 并延长到点 E, 使 ME=PM, 联结 DE (1)请你利用图 2,选择 RtABC 内的任意一点 P 按上述方法操作; (2)经历(1)之后,观察两图形,猜想线段 DE 和线段 AC 之间有怎样的位置关系?请选择其中的 一个图形证明你的猜想; (3)观察两图,你还可得

    14、出和 DE 相关的什么结论?请直接写出 【答案】(1)略;(2)DEAC; (3)DE/BC,DE=BC 【习题 1】判断题: (1)夹在两平行线间的平行线段长度相等 ( ) (2)对角线互相平分的四边形的对边一定相等 ( ) (3)一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形( ) (4)一组对角相等,另一组对角互补的四边形是平行四边形 ( ) 【答案】(1)正确; (2)正确; (3)错误; (4)错误 【习题 2】四边形的四条边长分别是 a,b,c,d,其中 a,c 为对边,且满足 2222 22abcdabcd,则这个四边形一定是( ) A两组角分别相等的四边形 B平行

    15、四边形 C对角线互相垂直的四边形 D对角线相等的四边形 【答案】C D E C B A F E O C D B A F 【习题 3】若 AD 是ABC 的中线,延长 AD 到 E 使 DE=AD,联结 BE、CE,那么四边形 ABEC 是_ 四边形 【答案】平行四边形 【习题 4】如图,直线l与双曲线交于 A、C 两点, 将直线l绕点 O 顺时针旋转(045) , 与双曲线交于 D、B 两点,则四边形 ABCD 的形状一定是_, 理由是_ 【答案】平行四边形,对角线互相平分的四边形是平行四边形 【习题 5】如图所示:ABCD的对角线相交于点 O,直线 EF 经过点 O,分别与 AB、CD 的延

    16、长线交 于点 E、F.求证四边形 AECF 是平行四边形. 【答案】易证COFAOE,从而 CF=AE 根据一组对边平行且相等的四边形是平行四边形 可证. 【习题 6】已知:如图,在三角形 ABC 中,AB=AC,E 是 AB 的中点.以点 E 为圆心,EB 为半径画弧, 交 BC 于点 D,联结 ED,并延长 ED 到点 F,使 DF=DE,联结 FC.求证:F=A. 【答案】通过证明四边形 AEFC 为平行四边形即可. 【习题 7】E 为ABC中 AC 边上一点,/ /EDAB交 BC 于点 D,F 为 AB 边上一点,AFDE, 延长 FD 到点 G,使DGFD,联结 AG,求证:DE、

    17、AG 互相平分 A B C D E F G 【答案】联结 AD,EG DE/AF,DE=AF,四边形 AEDF 是平行四边形, AE=DF,AE/DF, 又DF=DG, AE=DG 四边形 ADGE 是平行四边形, DE、AG 互相平分 【习题 8】如图,在四边形ABCD中,/ /ADBC且ADBC,6BCcm,点PQ、分别 从AC、同时出发,点P以1/cm s的速度由A向D运动,点Q以2/cm s的速度由C向B运动,几 秒时,四边形ABQP是平行四边形? 【答案】2 秒 【习题 9】如图所示,平行四边形 ABCD 中,BAD 的角平分线 AF 交 BC 于 E,交 DC 的 延长线于点 F,

    18、若ABC=120,FGCE,FG=CE,分别连接 DB、DG,求BDG 的度数 【答案】60 分别联结 GB,GE,GC,BD AF 平分BAD, BAF=DAF 四边形 ABCD 是平行四边形, AD/BC,AB/CD DAF=CEF,BAF=AFD, CEF=AFD, CE=CF AB/CD,ABC=120, ECF=ABC=120 FG/CE 且 FG=CE,四边形 CEGF 是平行四边形, CE=CF,EG=EC GCF=GCE= 1 2 ECF=60, ECG 是等边三角形, EG=CG,GEC=EGC=60,GEC=GCF, BEG=DCG 由 AD/BC 及 AF 平分BAD 可

    19、得BAE=AEB,AB=BE 在平行四边形 ABCD 中,AB=CD, BE=CD, BEGDCG, BG=DG,BGD=EGC=60, BDG=60 【习题 10】如图,在平面直角坐标系中,函数 y2x12 的图像分别交 x 轴、y 轴于 A、B A D C B P Q A B C D E F G 两点过点 A 的直线交 y 轴正半轴于点 C,且点 C 为线段 OB 的中点 (1)求直线 AC 的表达式; (2)如果四边形 ACPB 是平行四边形,求点 P 的坐标 (3)如果以 A、C、P、B 为顶点的四边形是平行四边形,求点 P 的坐标 【答案】(1)直线 AB 的解析式是 y=2x+12, A(-6,0) ,B(0,12) 又C 是线段 OB 的中点, C(0,6) 直线 AC 的解析式是6yx; (2)根据平行四边形性质,AB/PC,AB=PC, P(6,18) ; (3)当 AP/BC,AP=BC 时,P(-6,6)或(-6,-6) , 当 BP/AC,BP=AC 时,P(6,18) , 所以符合条件的 P 坐标为(-6,6)或(-6,-6)或(6,18) A B C O x y


    注意事项

    本文(著名机构讲义春季10-八年级培优版-平行四边形的判定-教师版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开