欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    著名机构数学讲义暑假19-八年级培优 版-直角三角形的判定与性质-教师版

    • 资源ID:129429       资源大小:314.37KB        全文页数:9页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    著名机构数学讲义暑假19-八年级培优 版-直角三角形的判定与性质-教师版

    1、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 直角三角形的判定与性质 知识模块:知识模块:直角三角形的判定直角三角形的判定 直角三角形全等判定定理:直角三角形全等判定定理: 有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理”或“ HL” 同时我们还需要关注: 1三边对应相等的两个三角形全等,简写成“边边边”或“SSS” 2两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或“ASA” 3两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边”或“AAS” 4两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS” 【例

    2、1】下列命题中真命题是( ) A如果两个直角三角形的两条边相等,那么这两个直角三角形全等 直角三角形的判定与性质 B如果两个直角三角形的一条边和一个锐角对应相等,那么这两个直角三角形全等 C如果两个直角三角形的两个角对应相等,那么这两个直角三角形全等 D如果两个直角三角形的一条直角边和斜边对应相等,那么这两个直角三角形全等 【答案】D 【例 2】下列条件中,不能判定两个直角三角形全等的是( ) A两个锐角对应相等 B一条直角边和一个锐角对应相等 C两条直角边对应相等 D一条直角边和一条斜边对应相等 【答案】A 【例 3】 如图所示,C=D=90添加一个条件,可使用“HL”判定 RtABC 与

    3、RtABD 全等以 下给出的条件适合的是( ) AAC=AD BAB=AB CABC=ABDDBAC=BAD 【答案】A 【例 4】如图,已知 ACBD,垂足为 O,AO=CO,AB=CD,则可得到AOBCOD,理由是( ) AHL BSAS CASA DAAS 【答案】A 【例 5】如图,ABC 中,AB=AC,BDAC 于 D,CEAB 于 E,BD 和 CE 交于 O,AO 的延长线交 BC 于 F,则图中全等的直角三角形有( ) A3 对 B4 对 C5 对 D6 对 【答案】D 【例 6】 如图所示,在ABC 中,AB=CB,ABC=90,F 为 AB 延长线上一点,点 E 在 BC

    4、 上,且 AE=CF求证:RtABERtCBF 【答案】略 【例 7】如图,ADBC 于 D,AD=BD,AC=BE (1)请说明1=C; (2)猜想并说明 DE 和 DC 有何特殊关系 【答案】相等 知识模块:知识模块:直角三角形的性质直角三角形的性质 1.性质定理 1:直角三角形的两锐角互余。 2.性质定理 2:直角三角形斜边上的中线等于斜边的一半 推论 1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半 推论 2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30 【例 8】如图,B=D=90,BC=CD,1=40,则2=( ) A40

    5、B50 C60 D75 【答案】B 【例 9】在锐角ABC 中,CD,BE 分别是 AB,AC 边上的高,且 CD,BE 交于点 P,若A=50,则 BPC 的度数是_度 【答案】130 【例 10】如图,已知在ABC 中,C=90,那么1+2=_度 【答案】270 【例 11】如图,在 RtABC 中,ACB=90,CD 是斜边 AB 上的中线,那么下列结论错误的是( ) AA+DCB=90 BADC=2B CAB=2CD DBC=CD 【答案】D 【例 12】如图,在 RtABC 中,ACB=90,CD、CM 分别是斜边上的高和中线,那么下列结论中错 误的是( ) AACD=B BACM=

    6、BCD CACD=BCM DMCD=ACD 【答案】D 【例 13】如图,在ABC 中,CFAB 于 F,BEAC 于 E,M 为 BC 的中点,EF=5,BC=8,则EFM 的周长是( ) A13 B18 C15 D21 【答案】A 【例 14】如图,RtABC 中,ACB=90,CD 是 AB 边上的中线,AC 比 BC 长 3cm,如果ADC 的 周长为 12cm,那么BDC 的周长为_cm 【答案】9 【例 15】已知:如图,在ABC 中,AD 是高,CE 是 AB 边上的中线,且 DC=BE 求证:B=2BCE 【答案】略 【例 16】 已知: 如图, 在ABC 中, BAC=90,

    7、 AB=AC, 点 E 在边 BC 的延长线上, DAAE, AD=AE (1)求证:ABEACD; (2)如果点 F 是 DE 的中点,求证:CF=DF 【答案】略 【例 17】已知:如图,在ABC 中,CDAB 垂足为 D,BEAC 垂足为 E,连接 DE,点 G、F 分别 是 BC、DE 的中点 求证:GFDE 【答案】略 【例 18】如图,在 RtABC 中,AD 是斜边 BC 上的高,B=30,那么线段 BD 与 CD 的数量关系为 ( ) ABD=CD BBD=2CD CBD=3CD DBD=4CD 【答案】C 【例 19】已知 RtABC 中,C=90,且 1 2 BCAB,则A

    8、 等于( ) A30 B45 C60 D不能确定 【答案】A 【例 20】如图,在ABC 中,AB=AC,A=120,如果 D 是 BC 的中点,DEAB,垂足是 E,那么 AE:BE 的值等于( ) A 1 3 B 3 3 C D 【答案】A 【例 21】已知:如图,在ABC 中,C=90,BD 平分ABC, 1 2 BCAB,BD=2,则点 D 到 AB 的距离为( ) A1 B2 C3 D3 【答案】A 【例 22】已知:如图,ABC 中,C=90,AC=BC,BDAB,BAD=30,若 AD=8,求 AC 的长 【答案】2 6 【例 23】如图,BAC=30,点 P 是BAC 的平分线

    9、上的一点,PDAC 于 D,PEAC 交 AB 于 E, 已知 AE=10cm,求 PD 的长度 【答案】5 【习题 1】下列条件中不能判定两个直角三角形全等的是( ) A两个锐角分别对应相等 B两条直角边分别对应相等 C一条直角边和斜边分别对应相等 D一个锐角和一条斜边分别对应相等 【答案】A 【习题 2】如果直角三角形的斜边长为 12cm,那么这条边上的中线长为_cm 【答案】6 【习题 3】如果一个直角三角形斜边上的中线与斜边所成的锐角等于 40,那么这个直角三角形的 较小的内角是_度 【答案】20 【习题 4】如图,在ABC 中,BAC=90,点 D 在 BC 延长线上,且,若D=50

    10、, 则B=_ 【答案】25 【习题 5】如图,在ABC 中,ACB=90,CAB=30以 AB 长为一边作ABD,且 AD=BD, ADB=90,取 AB 中点 E,连 DE、CE、CD则EDC=_ 【答案】75 【习题 6】等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为_度 【答案】30150或 【习题 7】 如图, 已知直线 AM 过ABC 的边 BC 的中点 D, BEAM 于 E, CFAM 于 F 求证: DE=DF 【答案】略 【习题 8】如图,在四边形 ABCD 中,DAB=DCB=90,对角线 AC 与 BD 相交于点 O,M、N 分别 是边 BD、AC 的中点 (1)求证:MNAC; (2)当 AC=8cm,BD=10cm 时,求 MN 的长 【答案】3 【习题 9】已知MAN,AC 平分MAN (1)在图 1 中,若MAN=120,ABC=ADC=90,求证:AB+AD=AC; (2)在图 2 中,若MAN=120,ABC+ADC=180,则(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立,请说明理由 【答案】成立


    注意事项

    本文(著名机构数学讲义暑假19-八年级培优 版-直角三角形的判定与性质-教师版)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开