欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    高考数学一轮复习学案:导数与函数的综合问题(含答案)

    • 资源ID:130425       资源大小:124.48KB        全文页数:8页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学一轮复习学案:导数与函数的综合问题(含答案)

    1、第第 3 课时课时 导数与函数的综合问题导数与函数的综合问题 题型一题型一 导数与不等式导数与不等式 命题点 1 证明不等式 典例 (2017 贵阳模拟)已知函数 f(x)1x1 ex ,g(x)xln x. (1)证明:g(x)1; (2)证明:(xln x)f(x)1 1 e2. 证明 (1)由题意得 g(x)x1 x (x0), 当 00, 即 g(x)在(0,1)上为减函数,在(1,)上为增函数 所以 g(x)g(1)1,得证 (2)由 f(x)1x1 ex ,得 f(x)x2 ex , 所以当 00, 即 f(x)在(0,2)上为减函数,在(2,)上为增函数, 所以 f(x)f(2)

    2、11 e2(当且仅当 x2 时取等号) 又由(1)知 xln x1(当且仅当 x1 时取等号), 且等号不同时取得, 所以(xln x)f(x)1 1 e2. 命题点 2 不等式恒成立或有解问题 典例 (2018 大同模拟)已知函数 f(x)1ln x x . (1)若函数 f(x)在区间 a,a1 2 上存在极值,求正实数 a 的取值范围; (2)如果当 x1 时,不等式 f(x) k x1恒成立,求实数 k 的取值范围 解 (1)函数的定义域为(0,), f(x)11ln x x2 ln x x2 , 令 f(x)0,得 x1. 当 x(0,1)时,f(x)0,f(x)单调递增; 当 x(

    3、1,)时,f(x)0,h(x)是增函数, 当 00)的最小值为 f 1 e 1 e, 设 (x) x ex 2 e(x0),则 (x) 1x ex , 当 x(0,1)时,(x)0,(x)单调递增; 当 x(1,)时,(x) x ex 2 e恒成立, 即 F(x)0 恒成立,函数 F(x)无零点 思维升华 利用导数研究方程的根(函数的零点)的策略 研究方程的根或曲线的交点个数问题,可构造函数,转化为研究函数的零点个数问题可利 用导数研究函数的极值、最值、单调性、变化趋势等,从而画出函数的大致图象,然后根据 图象判断函数的零点个数 跟踪训练 (1)(2017 贵阳联考)已知函数 f(x)的定义域

    4、为1,4,部分对应值如下表: x 1 0 2 3 4 f(x) 1 2 0 2 0 f(x)的导函数 yf(x)的图象如图所示当 10,由三次函数图象知 f(x)有负数零点,不合题意,故 a0 知,f 2 a 0, 即 a 2 a 33 2 a 210,化简得 a240, 又 a0. 所以当 x40 时,y 有最小值 一审条件挖隐含 典例 (12 分)设 f(x)a xxln x,g(x)x 3x23. (1)如果存在 x1,x20,2使得 g(x1)g(x2)M 成立,求满足上述条件的最大整数 M; (2)如果对于任意的 s,t 1 2,2 ,都有 f(s)g(t)成立,求实数 a 的取值范

    5、围 (1)存在 x1,x20,2使得 g(x1)g(x2)M (正确理解“存在”的含义) g(x1)g(x2)maxM 挖掘g(x1)g(x2)max的隐含实质 g(x)maxg(x)minM 求得 M 的最大整数值 (2)对任意 s,t 1 2,2 都有 f(s)g(t) (理解“任意”的含义) f(x)ming(x)max 求得 g(x)max1 a xxln x1 恒成立 分离参数 a axx2ln x 恒成立 求 h(x)xx2ln x 的最大值 ah(x)maxh(1)1 a1 规范解答 解 (1)存在 x1,x20,2使得 g(x1)g(x2)M 成立,等价于g(x1)g(x2)m

    6、axM.2 分 由 g(x)x3x23,得 g(x)3x22x3x x2 3 . 令 g(x)0,得 x2 3, 又 x0,2,所以 g(x)在区间 0,2 3 上单调递减,在区间 2 3,2 上单调递增,所以 g(x)min g 2 3 85 27, g(x)maxg(2)1. 故g(x1)g(x2)maxg(x)maxg(x)min112 27 M, 则满足条件的最大整数 M4.5 分 (2)对于任意的 s,t 1 2,2 ,都有 f(s)g(t)成立,等价于在区间 1 2,2 上,函数 f(x)ming(x)max.7 分 由(1)可知在区间 1 2,2 上,g(x)的最大值为 g(2)1. 在区间 1 2,2 上,f(x) a xxln x1 恒成立等价于 axx 2ln x 恒成立 设 h(x)xx2ln x,h(x)12xln xx,可知 h(x)在区间 1 2,2 上是减函数,又 h(1) 0, 所以当 1x2 时,h(x)0;当1 2x0.10 分 即函数 h(x)xx2ln x 在区间 1 2,1 上单调递增,在区间(1,2)上单调递减,所以 h(x)maxh(1) 1, 所以 a1,即实数 a 的取值范围是1,)12 分


    注意事项

    本文(高考数学一轮复习学案:导数与函数的综合问题(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开