欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019-2020学年江西省南昌二中高二(上)第一次月考数学试卷(理科)(10月份)含详细解答

    • 资源ID:131456       资源大小:341.50KB        全文页数:21页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019-2020学年江西省南昌二中高二(上)第一次月考数学试卷(理科)(10月份)含详细解答

    1、2019-2020 学年江西省南昌二中高二(上)第一次月考数学试卷(理科)一、选择题(本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分)分) 1 (5 分)直线xy10 的倾斜角大小( ) A B C D 2 (5 分)已知方程+1 表示椭圆,则 k 的取值范围为( ) Ak3 且 k B3k2 且 k  Ck2 Dk3 3 (5 分)两直线 3x+y30 与 6x+my+10 平行,则它们之间的距离为( ) A4 B C D 4 (5 分)化简方程10 为不含根式的形式是( ) A B  C D 5(5分) 若直线 x2y+20 经过椭圆的一个焦点和一

    2、个顶点, 则该椭圆的标准方程为 ( )  A+y21  B+1  C+y21 或+1  D以上答案都不对 6 (5 分)若 x,y 满足,则的最大值为( ) A0 B2 C D1 7 (5 分) 与直线 xy40 和圆 x2+y2+2x2y0 都相切的半径最小的圆的方程是 ( )  第 2 页(共 21 页) A (x+1)2+(y+1)22 B (x+1)2+(y+1)24  C (x1)2+(y+1)22 D (x1)2+(y+1)4 8 (5 分)设 F1、F2是椭圆 E:+1(ab0)的左、右焦点,P 为直线 x上 一点,F2

    3、PF1是底角为 30的等腰三角形,则 E 的离心率为( ) A B C D 9 (5 分) 设椭圆+1 (ab0) 的离心率为 e, 右焦点为 F (c, 0) , 方程 ax2+bx c0 的两个实根分别为 x1和 x2,则点 P(x1,x2) ( ) A必在圆 x2+y22 外 B必在圆 x2+y22 上  C必在圆 x2+y22 内 D以上三种情形都有可能 10 (5 分)已知 P(4,4) ,Q 是椭圆 x2+2y216 上的动点,M 是线段 PQ 上的点,且 满足 PMMQ,则动点 M 的轨迹方程是( ) A (x3)2+2(y3)21 B (x+3)2+2(y+3)21

    4、 C (x+1)2+2(y+1)29 D (x1)2+2(y1)29 11 (5 分)直线 ykx+1,当 k 变化时,直线被椭圆截得的最大弦长是( ) A4 B2 C D不能确定 12 (5 分)若对圆(x1)2+(y1)21 上任意一点 P(x,y) ,|3x4y+a|+|3x4y9| 的取值与 x,y 无关,则实数 a 的取值范围是( ) Aa4 B4a6 Ca4 或 a6 Da6 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分)分) 13 (5 分)椭圆短轴的长为 8,则实数 m   14 (5 分)已知直线 l:

    5、xy+60 与圆 x2+y212 交于 A,B 两点,过 A,B 分别作 l 的垂线与 x 轴交于 C,D 两点则|CD|   15 (5 分)已知点 P 是椭圆+1 上一点,其左、右焦点分别为 F1、F2,若F1PF2 的外接圆半径为 4,则F1PF2的面积是   第 3 页(共 21 页) 16 (5 分)已知从圆 C: (x+1)2+(y2)22 外一点 P(x1,y1)向该圆引一条切线,切 点为 M,O 为坐标原点,且有|PM|PO|,则当|PM|取最小值时点 P 的坐标为   三、解答题(本大题共三、解答题(本大题共 6 小题,共小题,共 70 分)分)

    6、 17 (10 分)已知两直线 l1:axby+40,l2: (a1)x+y+b0求分别满足下列条件的 a, b 的值 (1)直线 l1过点(3,1) ,并且直线 l1与 l2垂直; (2)直线 l1与直线 l2平行,并且坐标原点到 l1,l2的距离相等 18 (12 分) ()求以原点 O 为圆心,被直线 xy+10 所得的弦长为的圆的方程 ()求与圆(x1)2+(y2)25 外切于(2,4)点且半径为 2的圆的方程 19 (12 分)已知圆 C 的方程为 x2+y24 ()求过点 P(2,1)且与圆 C 相切的直线的方程; ()圆 C 有一动点,若向量,求动点 Q 的 轨迹方程 20 (1

    7、2 分)已知椭圆 C:(ab0)的离心率为,短轴一个端点到右焦点 的距离为 ()求椭圆 C 的方程; ()设直线 l 与椭圆 C 交于 A、B 两点,坐标原点 O 到直线 l 的距离为,求AOB 面积的最大值 21 (12 分)过点 M(4,3)的动直线 l 交 x 轴的正半轴于 A 点,交 y 轴正半轴于 B 点 ()求OAB(O 为坐标原点)的面积 S 最小值,并求取得最小值时直线 l 的方程 ()设 P 是OAB 的面积 S 取得最小值时OAB 的内切圆上的动点,求 u |PO|2+|PA|2+|PB|2的取值范围 22 (12 分)已知椭圆 C 中心在坐标原点,焦点在 x 轴上,且过点

    8、 P,直线 l 与 椭圆交于 A,B 两点(A,B 两点不是左右顶点) ,若直线 l 的斜率为时,弦 AB 的中点 D 在直线上 ()求椭圆 C 的方程 ()若以 A,B 两点为直径的圆过椭圆的右顶点,则直线 l 是否经过定点,若是,求出 第 4 页(共 21 页) 定点坐标,若不是,请说明理由 第 5 页(共 21 页) 2019-2020 学年江西省南昌二中高二(上)第一次月考数学试卷学年江西省南昌二中高二(上)第一次月考数学试卷 (理科) (理科) (10 月份)月份) 参考答案与试题解析参考答案与试题解析 一、选择题(本大题共一、选择题(本大题共 12 小题,每小题小题,每小题 5 分

    9、,共分,共 60 分)分) 1 (5 分)直线xy10 的倾斜角大小( ) A B C D 【分析】利用斜率与倾斜角的关系即可得出 【解答】解:设直线xy10 的倾斜角为 ,0,) , 则 tan, 故选:B 【点评】本题考查了斜率与倾斜角的关系,考查了推理能力与计算能力,属于基础题 2 (5 分)已知方程+1 表示椭圆,则 k 的取值范围为( ) Ak3 且 k B3k2 且 k  Ck2 Dk3 【分析】利用椭圆的简单性质列出不等式组,求解即可 【解答】解:方程+1 表示椭圆,只需满足:,解得3k2 且 k 故选:B 【点评】本题考查椭圆的简单性质的应用,考查计算能力 3 (5

    10、分)两直线 3x+y30 与 6x+my+10 平行,则它们之间的距离为( ) A4 B C D 【分析】 根据两条直线平行的条件, 建立关于 m 的等式解出 m2 再将两条直线化成 x、 y 的系数相同,利用两条平行直线间的距离公式加以计算,可得答案 【解答】解:直线 3x+y30 与 6x+my+10 平行, 第 6 页(共 21 页) ,解得 m2 因此,两条直线分别为 3x+y30 与 6x+2y+10, 即 6x+2y60 与 6x+2y+10 两条直线之间的距离为 d 故选:D 【点评】本题已知两条直线互相平行,求参数 m 的值并求两条直线的距离着重考查了 直线的位置关系、平行线之

    11、间的距离公式等知识,属于基础题 4 (5 分)化简方程10 为不含根式的形式是( ) A B  C D 【分析】方程10,它的几何意义是动点 P(x,y)到定 点(0,3)与到定点(0,3)的距离之和为 10,从而轨迹为椭圆,故可求 【解答】解:方程10, 它的几何意义是动点 P(x,y)到定点(0,3)与到定点(0,3)的距离之和为 106,  从而轨迹为椭圆,焦点在 y 轴上, 且 a5,c3,b4, 其标准方程为: 故选:C 【点评】本题考查圆锥曲线的定义,考查方程的几何意义,考查椭圆的标准方程,是个 简单题 5(5分) 若直线 x2y+20 经过椭圆的一个焦点和一个

    12、顶点, 则该椭圆的标准方程为 ( )  A+y21  B+1  第 7 页(共 21 页) C+y21 或+1  D以上答案都不对 【分析】利用椭圆的简单性质求解,题中没有明确焦点在 x 轴还是在 y 轴上,所以分情 况讨论 【解答】解:设焦点在 x 轴上,椭圆的标准方程为 焦点坐标为(c,0) , (c,0) ,顶点坐标为(0,b) , (0,b) ; 椭圆的 a,b,c 关系: ;a2b2c2 直线 x2y+20 恒过定点(0,1) 直线 x2y+20 必经过椭圆的焦点(c,0) ,和顶点(0,b) 带入直线方程: 解得:c2,b1,a 焦点在 x

    13、轴上,椭圆的标准方程为; 当设焦点在 y 轴,椭圆的标准方程为 焦点坐标为(0,c) , (0,c) ,顶点坐标为(b,0) , (b,0) ; 椭圆的 a,b,c 关系:a2b2c2 直线 x2y+20 恒过定点(0,1) 直线 x2y+20 必经过椭圆的焦点(0,c) ,和顶点(b,0) 带入直线方程 解得:c1,b2,a 焦点在 y 轴上,椭圆的标准方程为 故选:C 【点评】本题考查椭圆方程的求法,题中没有明确焦点在 x 轴还是在 y 轴上,要分情况 第 8 页(共 21 页) 讨论,解题时要注意椭圆的简单性质的合理运用,属于基础题 6 (5 分)若 x,y 满足,则的最大值为( ) A

    14、0 B2 C D1 【分析】作出题中不等式组表示的平面区域,得到如图的ABC 及其内部设 P(x,y) 为区域内一点,定点 D(0,1) ,可得目标函数的表示 P、O 两点连线的斜率,运 动点 P 并观察直线 PD 斜率的变化,即可得到 z 的最大值 【解答】解:作出不等式式表示的平面区域, 得到如图的三角形及其内部 其中 C(1,1) ,设 P(x,y)为区域内点, 定点 D(0,1) z2, z 的最大值为:2 故选:B 【点评】本题给出二元一次不等式组,着重考查了二元一次不等式组表示的平面区域和 直线的斜率等知识,是中档题 7 (5 分) 与直线 xy40 和圆 x2+y2+2x2y0

    15、都相切的半径最小的圆的方程是 ( )  A (x+1)2+(y+1)22 B (x+1)2+(y+1)24  C (x1)2+(y+1)22 D (x1)2+(y+1)4 第 9 页(共 21 页) 【分析】由题意先确定圆心的位置,再结合选项进行排除,并得到圆心坐标,再求出所 求圆的半径 【解答】解:由题意圆 x2+y2+2x2y0 的圆心为(1,1) ,半径为, 过圆心(1,1)与直线 xy40 垂直的直线方程为 x+y0, 所求的圆的圆心在此直线上,排除 A、B, 圆心(1,1)到直线 xy40 的距离为3,则所求的圆的半径为, 故选:C 【点评】本题主要考查了由题意求

    16、圆的标准方程,作为选择题可结合选项做题,这样可 提高 做题的速度 8 (5 分)设 F1、F2是椭圆 E:+1(ab0)的左、右焦点,P 为直线 x上 一点,F2PF1是底角为 30的等腰三角形,则 E 的离心率为( ) A B C D 【分析】利用F2PF1是底角为 30的等腰三角形,可得|PF2|F2F1|,根据 P 为直线 x 上一点,可建立方程,由此可求椭圆的离心率 【解答】解:F2PF1是底角为 30的等腰三角形, |PF2|F2F1| P 为直线 x上一点 故选:C 第 10 页(共 21 页) 【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题 &nbs

    17、p;9 (5 分) 设椭圆+1 (ab0) 的离心率为 e, 右焦点为 F (c, 0) , 方程 ax2+bx c0 的两个实根分别为 x1和 x2,则点 P(x1,x2) ( ) A必在圆 x2+y22 外 B必在圆 x2+y22 上  C必在圆 x2+y22 内 D以上三种情形都有可能 【分析】通过 e可得,利用韦达定理可得 x1+x2、x1x2,根据 完全平方公式、点与圆的位置关系计算即得结论 【解答】解:e, x1,x2是方程 ax2+bxc0 的两个实根, 由韦达定理:x1+x2,x1x2, x12+x22(x1+x2)22x1x2+12, 点 P(x1,x2)必在圆 x

    18、2+y22 内 故选:C 【点评】本题考查椭圆的基本性质,考查点与圆的位置关系,注意解题方法的积累,属 于中档题 10 (5 分)已知 P(4,4) ,Q 是椭圆 x2+2y216 上的动点,M 是线段 PQ 上的点,且 满足 PMMQ,则动点 M 的轨迹方程是( ) A (x3)2+2(y3)21 B (x+3)2+2(y+3)21  C (x+1)2+2(y+1)29 D (x1)2+2(y1)29 第 11 页(共 21 页) 【分析】设动点 M(x,y) ,Q(m,n) ,则有 1  ,由,得到 m 4(x+3) ,n4(y+3) ,代入化简可得结果 【解答】 解:

    19、 椭圆 x2+2y216 即 1, 设动点 M (x, y) , Q (m, n) , 则有 1   ,m4(x+3) ,n4(y+3) ,代入化简可得 (x+3)2+2(y+3)21, 故选:B 【点评】本题考查用代入法求点的轨迹方程,得到,是解题的关键 11 (5 分)直线 ykx+1,当 k 变化时,直线被椭圆截得的最大弦长是( ) A4 B2 C D不能确定 【分析】直线 ykx+1 恒过定点 P(0,1) ,且是椭圆的短轴上顶点,因而此直线被椭圆 截得的弦长, 即为点 P 与椭圆上任意一点 Q 的距离, 设椭圆上任意一点 Q (2cos, sin) , 利用三角函数即可得到

    20、结论 【解答】解:直线 ykx+1 恒过定点 P(0,1) ,且是椭圆的短轴上顶点,因而此直线被 椭圆截得的弦长,即为点 P 与椭圆上任意一点 Q 的距离,设椭圆上任意一点 Q(2cos, sin) |PQ|2(2cos)2+(sin1)23sin22sin+5 当 sin时, , 故选:C 【点评】本题考查直线与椭圆的位置关系,考查三角函数知识,解题的关键是将问题转 化为点 P 与椭圆上任意一点 Q 的距离的最大值 12 (5 分)若对圆(x1)2+(y1)21 上任意一点 P(x,y) ,|3x4y+a|+|3x4y9| 的取值与 x,y 无关,则实数 a 的取值范围是( ) 第 12 页

    21、(共 21 页) Aa4 B4a6 Ca4 或 a6 Da6 【分析】由题意可得故|3x4y+a|+|3x4y9|可以看作点 P 到直线 m:3x4y+a0 与直 线 l:3x4y90 距离之和的 5 倍, ,根据点到直线的距离公式解得即可 【解答】解:设 z|3x4y+a|+|3x4y9|5(+) , 故|3x4y+a|+|3x4y9|可以看作点 P 到直线 m:3x4y+a0 与直线 l:3x4y90 距离之和的 5 倍, 取值与 x,y 无关, 这个距离之和与 P 无关, 如图所示:可知直线 m 平移时,P 点与直线 m,l 的距离之和均为 m,l 的距离,即此时 与 x,y 的值无关,

    22、 当直线 m 与圆相切时,1, 化简得|a1|5, 解得 a6 或 a4(舍去) , a6 故选:D 【点评】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于中档题 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分)分) 13 (5 分)椭圆短轴的长为 8,则实数 m 16 第 13 页(共 21 页) 【分析】利用椭圆方程,直接求解 m 即可 【解答】解:椭圆短轴的长为 8, 因为 a6,2a12,所以椭圆的焦点坐标在 x 轴, 可得4,解得 m16 故答案为:16 【点评】本题考查椭圆的简单性质的应用,是基本知识的考查 14 (5

    23、 分)已知直线 l:xy+60 与圆 x2+y212 交于 A,B 两点,过 A,B 分别作 l 的垂线与 x 轴交于 C,D 两点则|CD| 4 【分析】先求出|AB|,再利用三角函数求出|CD|即可 【解答】解:由题意,圆心到直线的距离 d3, |AB|22, 直线 l:xy+60, 直线 l 的倾斜角为 30, 过 A,B 分别作 l 的垂线与 x 轴交于 C,D 两点,设直线与 x 轴交于 M 点, , CD4, 故答案为:4 【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较 基础 15 (5 分)已知点 P 是椭圆+1 上一点,其左、右焦点分别为 F1、F

    24、2,若F1PF2 的外接圆半径为 4,则F1PF2的面积是 或 4 【分析】首先,得到该椭圆的焦点坐标,然后,求解外接圆的圆心,从而得到其方程, 然后,联立方程组,求解点 P 的纵坐标,从而得到该三角形的高,即得其面积 【解答】解:由题意,得 a4,b2,得  c2, F1(2,0)F2(2,0) , 第 14 页(共 21 页) 圆心 A 在 F1F2垂直平分线上,设圆心为 M(0,m) , 则有 AF24,可求得 m2, 外接圆方程为 x2+(y2)216, 与椭圆联立可求得 P 点的纵坐标 y或2, 其绝对值即为三角形的高, F1PF2的面积 SF1F2*|y(A)|或 4 故

    25、答案为:或 4 【点评】本题重点考查了椭圆的简单几何性质、三角形的面积公式等知识,属于中档题  16 (5 分)已知从圆 C: (x+1)2+(y2)22 外一点 P(x1,y1)向该圆引一条切线,切 点为 M,O 为坐标原点,且有|PM|PO|,则当|PM|取最小值时点 P 的坐标为 (, ) 【分析】C:x2+y2+2x4y+30,化为标准方程,求出圆心 C,半径 r设 P(x,y) 由 切线的性质可得:CMPM,利用|PM|PO|,可得 2x14y1+30要使|PM|最小,只 要|PO|最小即可 【解答】解:如图所示,C:x2+y2+2x4y+30 化为(x+1)2+(y2)2

    26、2,圆心 C (1,2) ,半径 r 因为|PM|PO|, 所以|PO|2+r2|PC|2(C 为圆心,r 为圆的半径) , 所以 x12+y12+2(x1+1)2+(y12)2,即 2x14y1+30要使|PM|最小,只要|PO|最 小即可 当直线 PO 垂直于直线 2x4y+30 时,即直线 PO 的方程为 2x+y0 时,|PM|最小,此 时 P 点即为两直线的交点,得 P 点坐标(,) 故答案为(,) 第 15 页(共 21 页) 【点评】本题考查了圆的切线的性质、勾股定理、两点之间的距离公式,考查了推理能 力与计算能力,属于中档题 三、解答题(本大题共三、解答题(本大题共 6 小题,

    27、共小题,共 70 分)分) 17 (10 分)已知两直线 l1:axby+40,l2: (a1)x+y+b0求分别满足下列条件的 a, b 的值 (1)直线 l1过点(3,1) ,并且直线 l1与 l2垂直; (2)直线 l1与直线 l2平行,并且坐标原点到 l1,l2的距离相等 【分析】 (1)利用直线 l1过点(3,1) ,直线 l1与 l2垂直,斜率之积为1,得到两 个关系式,求出 a,b 的值 (2)类似(1)直线 l1与直线 l2平行,斜率相等,坐标原点到 l1,l2的距离相等,利用 点到直线的距离相等得到关系,求出 a,b 的值 【解答】解: (1)l1l2, a(a1)+(b)

    28、10,即 a2ab0 又点(3,1)在 l1上, 3a+b+40 由得 a2,b2 (2)l1l2,1a,b, 故 l1和 l2的方程可分别表示为: (a1)x+y+0, (a1)x+y+0, 又原点到 l1与 l2的距离相等 第 16 页(共 21 页) 4|,a2 或 a, a2,b2 或 a,b2 【点评】本题考查两条直线垂直与倾斜角、斜率的关系,两条直线平行与倾斜角、斜率 的关系,考查计算能力,是基础题 18 (12 分) ()求以原点 O 为圆心,被直线 xy+10 所得的弦长为的圆的方程 ()求与圆(x1)2+(y2)25 外切于(2,4)点且半径为 2的圆的方程 【分析】 ()

    29、利用垂径定理, 求出以原点 O 为圆心, 被直线 xy+10 所得的弦长为 的圆的半径,然后求解圆的方程 ()求出连心线的斜率,设出圆的圆心坐标,利用两圆外切,列出方程,转化求解圆 的方程 【解答】解: ()因为 O 点到直线 xy+10 的距离为, 所以圆 O 的半径为, 故圆 O 的方程为 x2+y22 ()连心线斜率,设所求圆心(a,b) ,则,解得 b2a 因为两圆相外切,所以 由解得,或, 经检验,当时,不符合题意,故舍去 所以,所求圆的方程为(x4)2+(y8)220 【点评】本题考查直线与圆的位置关系的综合应用,切线方程的应用,考查转化思想以 及计算能力 19 (12 分)已知圆

    30、 C 的方程为 x2+y24 ()求过点 P(2,1)且与圆 C 相切的直线的方程; ()圆 C 有一动点,若向量,求动点 Q 的 轨迹方程 【分析】 ()求出圆心与半径,利用直线的斜率是否存在,结合过点 P(2,1)且与圆 C 相切的关系判断求解切线的方程; 第 17 页(共 21 页) ()设出 Q 的坐标,通过,列出方程即可求动点 Q 的轨迹方程 【解答】解: ()圆 C 的方程为 x2+y24 的圆心为坐标原点,半径为 2, 当斜率不存在时,x2,过点 P(2,1)且与圆 C 相切的直线的方程 x2 满足题意; 当斜率存在时,设切线方程为 y1k(x2) ,由 得, 此时切线方程为:3

    31、x+4y100, 则所求的切线方程为 x2 或 3x+4y100; () 设 Q 点的坐标为(x,y) , (x,y)(x0,2y0) ,xx0,y2y0, ,即 【点评】本题考查轨迹方程的求法,直线与圆的位置关系的应用,是基本知识的考查 20 (12 分)已知椭圆 C:(ab0)的离心率为,短轴一个端点到右焦点 的距离为 ()求椭圆 C 的方程; ()设直线 l 与椭圆 C 交于 A、B 两点,坐标原点 O 到直线 l 的距离为,求AOB 面积的最大值 【分析】 ()设椭圆的半焦距为 c,依题意求出 a,b 的值,从而得到所求椭圆的方程  ()设 A(x1,y1) ,B(x2,y2

    32、) (1)当 ABx 轴时, (2)当 AB 与 x 轴 不垂直时,设直线 AB 的方程为 ykx+m 由已知,得把 ykx+m 代入椭圆方程,整理得(3k2+1) x2+6kmx+3m230,然后由根与系数的关系进行求解 【解答】解: ()设椭圆的半焦距为 c,依题意b1,所求椭圆方程为 ()设 A(x1,y1) ,B(x2,y2) 第 18 页(共 21 页) (1)当 ABx 轴时, (2)当 AB 与 x 轴不垂直时,设直线 AB 的方程为 ykx+m 由已知,得 把 ykx+m 代入椭圆方程,整理得(3k2+1)x2+6kmx+3m230, , |AB|2(1+k2) (x2x1)2

    33、 当且仅当,即时等号成立当 k0 时, 综 上 所 述 |AB|max 2 当 |AB| 最 大 时 , AOB面 积 取 最 大 值 【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,认真审题, 仔细解答 21 (12 分)过点 M(4,3)的动直线 l 交 x 轴的正半轴于 A 点,交 y 轴正半轴于 B 点 ()求OAB(O 为坐标原点)的面积 S 最小值,并求取得最小值时直线 l 的方程 ()设 P 是OAB 的面积 S 取得最小值时OAB 的内切圆上的动点,求 u |PO|2+|PA|2+|PB|2的取值范围 【分析】 ()设出斜率,求出 AB 坐标,推出OAB(O

    34、为坐标原点)的面积 S 最小值, 第 19 页(共 21 页) 即可取得最小值时直线 l 的方程 ()求出OAB 的面积 S 取得最小值时OAB 的内切圆上的动点,表示 u |PO|2+|PA|2+|PB|2的表达式,求解最值即可得到取值范围 【解答】 (1)解:设 l 斜率为 K,则 l:y3k(x4)得 A(4,0) ,B(0,34k) (k0) , 由,故Smin24,l:3x+4y240 ()OAB 面积 S 最小时,A(8,0) ,B(0,6) ,|AB|10,直角OAB 内切圆半径 ,圆心为 Q(2,2) , 内切圆方程为(x2)2+(y2)24 设 P(x,y) ,则 x2+y2

    35、4x4y+40,其中 0x4 U|PO|2+|PA|2+|PB|2x2+y2+(x8)2+y2+x2+(y6)23x2+3y216x12y+10088 4x(0x4) , 当 x0 时,Umax88,当 x4 时,Umin72 U 的范围是72,88 【点评】本题考查直线与圆的方程的综合应用,位置关系的应用,考查转化思想以及计 算能力 22 (12 分)已知椭圆 C 中心在坐标原点,焦点在 x 轴上,且过点 P,直线 l 与 椭圆交于 A,B 两点(A,B 两点不是左右顶点) ,若直线 l 的斜率为时,弦 AB 的中点 D 在直线上 ()求椭圆 C 的方程 ()若以 A,B 两点为直径的圆过椭

    36、圆的右顶点,则直线 l 是否经过定点,若是,求出 定点坐标,若不是,请说明理由 【分析】 ()设椭圆的标准方程为,A(x1,y1) ,B(x2,y2)利 用平方差法求出 a,b 关系,利用椭圆经过的点,即可求出 a,b,得到椭圆方程 ()由题意可得椭圆右顶点 A2(2,0) ,通过(1)当直线 l 的斜率不 第 20 页(共 21 页) 存在时,设直线 l 的方程为 xx0,求出直线 l 的方程 (2)当直线 l 的斜率存在时,设 直线 l 的方程为 ykx+b,推出,联立 直线和椭圆方程利用韦达定理的经过代入求解即可 【解答】解: ()设椭圆的标准方程为,A(x1,y1) ,B(x2, y2

    37、) 由题意得经过变换则有当时, 再根据 得到 a24b2,又因为椭圆过得到 a2,b1, 所以椭圆的方程为: ()由题意可得椭圆右顶点 A2(2,0) , (1)当直线 l 的斜率不存在时,设直线 l 的方程为 xx0, 此时要使以 A,B 两点为直径的圆过椭圆的右顶点, 则,解得或 x02(舍) , 此时直线 l 为 (2)当直线 l 的斜率存在时,设直线 l 的方程为 ykx+b,则有 4+x1x22(x1+x2)+y1y2 0, 化简得 联立直线和椭圆方程得(4k2+1)x2+8kbx+4b240,1+4k2b20, 第 21 页(共 21 页) 把代入得 即 4k2b24k2+4b248k2b2+16kb(4k2b2+16k2+b2+4) , 12k2+16kb+5b20,得 k或此时直线 l 过或(2,0) (舍) 综上所述直线 l 过定点 【点评】本题考查直线与椭圆的位置关系的综合应用,直线系方程的应用,考查分析问 题解决问题的能力; 分类讨论思想的应用


    注意事项

    本文(2019-2020学年江西省南昌二中高二(上)第一次月考数学试卷(理科)(10月份)含详细解答)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开