1、南通市 2020 年数学试卷 全真模拟卷(六) 第 1 页 共 6 页 2020 年江苏高考数学全真模拟试卷(六)(南通教研室) 数学数学试题试题 A必做题必做题部分部分 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置上 1.已知集合 A=1,0,2,B=0,1,2,3,则 AUB= 2.复数 z1i 2i (i 为虚数单位)的实部为 3.某新媒体就我国提前进入“5G 移动通信技术”商用元年的欢迎程度进行调查,参加调查的总 人数为 1000 其中持各种态度的人数如下表: 该媒体为进一步了解被调查者的具体想法,打算从中抽取50人进行更为 详细的调查
2、,则应抽取持“很欢迎”态度的人数为 4.执行如图所示的伪代码,则输出的 S 的值为 5.从 3,4,12 这 3 个数中随机取出 2 个数(逐个、不放回),分别记为 a,b,则 “ a b 是整数”的概率为 6.已知长方体 ABCD-A1B1C1D1的体积为 72,则三棱锥 A1-BC1D 的体积为 7.在平面直角坐标系 xOy 中,已知双曲线 C 的渐近线方程为 y x,且它的一个焦点为 F(2 ,0),则双曲线 C 的一条准线与两条渐近线所成的三角形的面积为 态度态度 很欢迎很欢迎 一般一般 不欢迎不欢迎 人数人数 720 240 40 注意事项 考生在答题前请认真阅读本注意事项及各题答题
3、要求: 1.本试卷共 4 页,均为非选择题(第 1 题第 20 题,共 20 题).本卷满分为 160 分,考试时间 为 120 分钟考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请您务必将自己的姓名、准考证号用 0.5 毫米色水的签字笔填写在答题卡的 规定位置. 3.请认真核对监考员在答题卡上所粘點的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用 0.5 毫米色墨水的签字笔在答题卡的指定位置作答,在其他位置作答 律无效. 5.如需作图,须用 2B 铅笔绘、写楚,线条、符号等须加黑、加粗. (第 4 题图) S 0 i 1 While i5 S S2 i i1 End
4、While Print S 南通市 2020 年数学试卷 全真模拟卷(六) 第 2 页 共 6 页 8.在平面直角坐标系 xOy 中,过点 P(1,t)作斜率为 1 e (e 为自然对数的底数)的直线,与曲线 ylnx 相切于点 T,则实数 t 的值为 9.设等比数列an的公比为 q(q1)其前 n 项和为 Sn,若 a2 + a4= 5 2 a3 , S2m =9Sm,则正整数 m 的值为 10.已知 f(x) 是定义在 R 上的偶函数,且在0,)上单调递减,则满足不等式 f(a2a1) f( 3 4 )的实数 a 的取值集合为 11.在 AOB 中,已知 OA=1,OB= 3 ,AOB 2
5、 .若点 C,D 满足OC = 9 16 OA 7 16 OB , CD 1 2 (CO CB ),则CD CO 的值为 12.在 ABC 中角 A,B,C 的对边分別为 a,b,c,且 35 bccosA 21 accosB 15 abcosC , 则 cosC 的值为 13.已知函数 f(x) = x1 x , x0, x1 x ,x0, 若函数 g(x) =f(x)xm 恰好有 2 个不同的 零点,则实数 m 的取值范围是 14.在平面直角坐标系 xOy 中,已知圆 O:x2+y2=1,直线 l:xay3=0(a0),过直线 l上一点 P 作圆 O 的两条切线,切点分別为 S,T,且PS
6、 PT 2 3 ,则实数 a 的最小值是 二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说 明、证明过程或演算步骤. 15.(本小题满分 14 分) 已知向量 a= (cosx 2 , sin x 2 ), b= ( 3 sin x 2 ,sin x 2 ),函数 f(x) =ab1 (1) 求函数 f(x)图象的对称轴方程; (2) 求函数 f(x)在,0上的最大值和最小值以及相应的 x 的值 南通市 2020 年数学试卷 全真模拟卷(六) 第 3 页 共 6 页 16.(本小题满分 14 分) 如图,在四面体 A-BCD 中,已知平面 ABC平面
7、 BCD, ABC 为正三角形, BCD 为等腰 直角三角形,其中 C 为直角顶点,E,F 分别为校 AC,AD 的中点. (1) 求证: CD平面 BEF; (2) 求证: BE平面 ACD. 17.(本小题满分 14 分) 为了打击海盗犯罪,甲、乙、丙三国海军进行联合军事演习,分别派出一艘军舰 A,B,C.演 习要求: 任何时刻军舰 A,B,C 均不得在同一条直线上. (1) 如图 1, 若演习过程中,A,B 间的距离始终保持 3 n mile, B,C 间的距离始终保持 2 n mile,求ACB 的最大值. (2) 如图2, 若演习过程中,A,C 间的距离始终保持1n mile,B,C
8、 间的距离始终保持 2 n mile. 且当ACB 变化时, 模拟海盗船 D 始终保持: 到 B 的距离与 A,B 间的距离相等, ABD = 90 , 与 C 在直线 AB 的两侧,求 C 与 D 间的最大距离. (第 16 题) A C D B E F (第 17 题) A C D B (图 2) (图 1) B C A 南通市 2020 年数学试卷 全真模拟卷(六) 第 4 页 共 6 页 18.(本小题满分 16 分) 在平面直角坐标系 xOy 中已知精圆 C:x 2 4 + y2=1,集点在 x 轴上的啊圆 C2与 C1的离心 率相同,且椭圆 C1的外切矩形 ABCD (两组对边分别
9、平行于 x 轴、y 轴)的顶点在椭圆 C2上. (1) 求椭圆 C2的标准方程. (2) 设 P(m,n)为椭圆 C2上一点(不与点 A,B,C,D 重合). 若直线:mx4my4=0,求证:直线 l 与椭圆 C1相交; 记中的直线 l 与椭圆 C1的交点为 S,T,求证 PST 的面积为定值. 19.(本小题满分 16 分) 已知函数 f(x) ax(x b)(x c),其中 a0,bc. (1)若 a b c 1,求函数 f(x)的单调减区间; (2)若数 f(x)的极值点是 x1,求 b,c 的值; (3)若 b1,曲线 yf(x)在 x0 处的切线斜率为1,求证: f(x)的极大值大于
10、 1 4. 20.(本小题满分 16 分) 已知数列an的各项均为正数,其前 n 项的积为 Tn,记 b1T1,bn n Tn (n2) (1)若数列an为等比数列,数列bn为等差数列,求数列an的公比. (2)若 a1=1,a2=2,且 nan-1(n1)an= an-1 an ,(n3) 求数列bn的通项公式. 记 cn =ln bn,那么数列cn中是否存在两项 cs,ct,(s,t 均为正偶数,且 st), 使得数 列 cs, c8,ct,成等差数列? 若存在,求 s,t 的值;若不存在, 请说明理由. 南通市 2020 年数学试卷 全真模拟卷(六) 第 5 页 共 6 页 数学数学附加
11、附加题题 A必做题必做题部分部分 21【选做題】本题包括 A、B、C 三小题,请选定其中两小题 ,并在相应的答题区域内作答 , 若多做,按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步聚 A.选修 4-2:矩阵与变换 (本小题满分 10 分) 已知矩阵 M= a b c d 的特征值为 3 和一 1, 对应的一个特征向量分别为 1 1 , 1 1 . (1)求矩阵 M; (2)设矩阵 M 的逆矩阵为 M-1,X= m n ,B= 4 2 ,且 M-1X=B,求实数 m,n 的值. B.选修 4:坐标系与参数方程 (本小题满分 10 分) 已知圆 C 的坐标方程为 22 cos(+
12、4 ). (1)求圆心 C 的极坐标; (2)现以极点 O 为坐标原点,极轴为 x 轴的正半轴,建立平面直角坐标系 xOy,求直线 x= 2 2 t y=1 2 2 t (l 为参数)被圆 C 截得的弦长. C.选修 45:不等式选讲 (本小题满分 10 分) 已知 a、b、cR,且 a2+b2+2c2=4,求实数 abc 的最大值. 注意事项 考生在答题前请认真阅读本注意事项及各题答题要求: 1.本试卷共 4 页,均为非选择题(第 21 题第 23 题).本卷满分为 40 分,考试时间为 30 分钟, 考试结束后,请将本试卷和答题卡一并交回 2.答题前,请您务必将自己的姓名、准考证号用 0.
13、5 毫米黑色墨水的签字笔填写在答题卡的 规定位置 3.请认真核对监考员在答题卡上所枯贴的条形码上的姓名、准考证号与您本人是否相符 4.作答试题必须用 0.5 毫米黑色墨水的签字笔在答题卡的指定位置作答,在其他位置作答一 律无效 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 南通市 2020 年数学试卷 全真模拟卷(六) 第 6 页 共 6 页 【必做题】 第 22 题、 第 23 题,每小题 10 分,共计 20 分.请在答题卡指定区域内作答,解答时应 写出文字说明、证明过程或演算步骤 22 (本小题满分 10 分) 如图,在空间直角坐标系 O-xyx 中,已知正四棱锥
14、 P-ABCD 的所有棱长均为 6,正方形 ABCD 的中心为坐标原点 O,AD,BC 平行于 x 轴, AB、CD 平行于 y 轴,顶点 P 在 z 轴的正 半轴上,点 M、N 分别在 PA,BD 上,且PM PA BN BD (01). (1) 若 1 3 ,求直线 MN 与 PC 所成角的大小; (2) 若二面角 A-PN-D 的平面角的余弦值为 6 10 ,求 的值. 23.(本小题满分 10 分) 已知集合 P=(1,2,3,n(nN),从 P 中任取 2 个元素,分别记为 a,b. (1)若 n=10,随机变量 X 表示 ab 被 3 除的余数,求 X=0 的概率; (2)若 n=
15、5k+1(k1 且 kN),随机变量 Y 表示 ab 被 5 除的余数,求 Y 的概率分布及 数学期望 E(Y). (第 22 题) A C M B N P O D z y x 南通市 2020 年数学试卷 全真模拟卷(六) 第 7 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 8 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 9 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 10 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 11 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 12 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 13 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 14 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 15 页 共 6 页 南通市 2020 年数学试卷 全真模拟卷(六) 第 16 页 共 6 页