欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    北师大版八年级下册数学《1.1 第2课时 等边三角形的性质》课件

    • 资源ID:136788       资源大小:1.31MB        全文页数:19页
    • 资源格式: PPTX        下载积分:50积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要50积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版八年级下册数学《1.1 第2课时 等边三角形的性质》课件

    1、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第2课时 等边三角形的性质,北师大版八年级下册数学教学课件,学习目标,1.进一步学习等腰三角形的相关性质,了解等腰三角 形两底角的角平分线(两腰上的高,中线)的性质; 2.学习等边三角形的性质,并能够运用其解决问 题.(重点、难点),在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.,思考:在上一节课我们证明等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?,导入新课,情境引入,讲授新课,上节课我们证明了等腰三角形的“三线合一

    2、”,试猜想等腰三角形的两底角的角平分线、两腰上的高、两腰上的中线有什么关系呢?,猜想:底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等.,你能证明你的猜想吗?,例1 证明:等腰三角形两底角的平分线相等,A,C,B,E,已知:,求证:,BD=CE.,如图, 在ABC中, AB=AC, BD和CE是ABC的角平分线,1,2,猜想证明,2= ACB(已知),AB=AC(已知), ABC=ACB(等边对等角).,证明:,又1= ABC,,1=2(等式性质),在BDC与CEB中,,DCB= EBC(已知),,BC=CB(公共边),,1=2(已证),,BDCCEB(ASA),BD=CE(全

    3、等三角形的对应边相等),A,C,B,E,1,2,又CM= ,BN= ,,例2 证明: 等腰三角形两腰上的中线相等,BM=CN,求证:,已知:如图,在ABC中,AB=AC,BM,CN 是ABC两腰上的中线,证明:,AB=AC(已知),ABC=ACB.,CM=BN 在BMC与CNB中,, BC=CB,MCB=NBC, CM=BN,,BMCCNB(SAS),BM=CN.,例3 证明: 等腰三角形两腰上的高相等,BP=CQ,求证:,已知:如图,在ABC中,AB=AC,BP,CQ是 ABC两腰上的高,证明:,AB=AC(已知),ABC=ACB.,在BMC与CNB中,, BC=CB,QBC=PCB, BQ

    4、C=CPB,,BQCCPB(SAS),BP=CQ.,还有其他的结论吗?,1.已知:如图,在ABC中,AB=AC. (1)如果ABD= ABC , ACE= ACB, 那么BD=CE吗? 为什么?,(2)如果ABD= ABC , ACE= ACB 呢?,由此你能得到一个什么结论?,议一议:,过底边的端点且与底边夹角相等的两线段相等.,BD=CE,BD=CE,BD=CE,2.已知:如图,在ABC中,AB=AC. (1)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD=CE,(2)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD=CE,由此你能得到一个什么结论

    5、?,(3)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD=CE,两腰上距顶点等距的两点与底边顶点的连线段相等.,这里是一个由特殊结论归纳出一般结论的一种数学思想方法.,想一想:等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征呢?,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,可以利用等腰三角形的性质进行证明.,怎样证明这一定理了?,定理证明,已知:如图,在ABC中, AB=AC=BC 求证:A=B=C=60,证明:在ABC中, AB=AC(已知), B=C(等边对等角). 同理A=B 又A+B+C=180(三角形的内角和等于180), A=B=C

    6、=60,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,例4:如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,求EDA的度数.,解:, ABC是等边三角形,,CBA=60.,BD是AC边上的中线,,BDA=90, DBA=30., BD=BE,, BDE=(180 DBA) 2 = (18030) 2=75., EDA=90 BDE=9075=15.,当堂练习,1.如图,ABC和ADE都是等边三角形,已ABC的周长为18cm,EC =2cm,则ADE的周长是 cm.,12,2.如图所示,ACM和BCN都为等边三角形,连接AN、BM,求证:AN=BM.,证明: ACM和B

    7、CN都为等边三角形, 1360, 123 2, 即ACNMCB. CACM,CBCN, CANCMB(SAS), ANBM.,3.如图,A、O、D三点共线,OAB和OCD是两个全等的等边三角形,求AEB的大小.,解:,OAB和OCD是两个全等的等边三角形.,AO=BO,CO=DO, AOB=COD=60., A、O、D三点共线,, DOB=COA=120,, COA DOB(SAS)., DBO=CAO.,设OB与EA相交于点F, EFB=AFO,, AEB=AOB=60.,F,变式:如图,若把“两个全等的等边三角形”换成“不全等的两个等边三角形”,其余条件不变,你还能求出AEB的大小吗?,方

    8、法与前面相同,AEB=60.,课堂小结,等腰三角形两底角上的平分线、两腰上的高、两腰上的中线的相关性质: 底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等.,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编

    9、本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,


    注意事项

    本文(北师大版八年级下册数学《1.1 第2课时 等边三角形的性质》课件)为本站会员(狮***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开