欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    云南省昆明市2020届高三“三诊一模”教学质量检测数学试题(理科)含答案

    • 资源ID:137536       资源大小:2.20MB        全文页数:13页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    云南省昆明市2020届高三“三诊一模”教学质量检测数学试题(理科)含答案

    1、昆明市昆明市 2020 届届“三诊三诊一一模模”高三复习教学质量检测高三复习教学质量检测 理科数学理科数学 一选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合 A=x|x2, B=-3,-2,-1,0,1,2,3, 则 AB= A. -3,-2 B. 2,3 C. -3,-2,3 D. -3,-2,2,3 2.已知复数 z 满足(1+2i)z=5i,则 z= A.2+i B.2-i C. -2+i D. -2-i 3.在正项等比数列 n a中,若 132 1,2,aaa n S为其前 n 项的和,则 6 3 S s A.

    2、6 B.9 C.12 D.15 4.若夹角为 120 的向量 a 与 b 满足|a+b|=|b|=2,则|a|= A.1 B.2 .2 3C D.4 5.已知某几何体的三视图如图所示,则该几何体的体积为 6 . 7 A B. D.2 6.执行如图所示的程序框图,则输出的 T= 7 . 6 C 3 . 2 A 12 . 7 B 5 . 3 C 8 . 5 D 7.已知圆 222 :(1)(1)Cxyrr与 x 轴负半轴的交点为 M,过点 M 且斜率为 2 的直线 1 与圆 C 的另一 个交点为 N,若 MN 的中点 P 恰好落在 y 轴上,则|MN|= 5 . 2 A 5 . 2 B 5 . 4

    3、 C 5 . 4 D 8.若直线 y=x 与曲线 y=lnx+ax 相切,则 a= 1 . A e 1 .B e 1 .1C e 1 .1D e 9.抛物线上任意两点 AB 处的切线交于点 P,称PAB 为“阿基米德三角形”.当线段 AB 经过抛物线焦点 F 时, PAB 具有以下特征: P 点必在抛物线的准线上;PAB 为直角三角形,且PAPBPFAB. 若经过抛物线 2 4yx焦点的一条弦为 AB,阿基米德三角形为PAB,且点 P 的纵坐标为 4,则直线 AB 的方程 为 A. x-2y-1=0 B.2x+y-2=0 C. x+2y-1=0 D.2x- y-2=0 10.已知函数 3 (

    4、)3 ,f xxx若对任意 t-1,1不等式 2 (2)( )0ftmf t恒成立,则实数 m 的取值范围 是 A. m1 1 . 2 Bm 1 . 4 Cm 1 . 8 Dm 11. 已知正四棱锥 P-ABCD 的高为 2,2 2,AB 过该棱锥高的中点且平行于底面 ABCD 的平面截该正四棱 锥所得截面为 1111, ABC D若底面 ABCD 与截面 1111 ABC D的顶点在同一球面上,则该球的表面积为 A.20 20 . 3 B C.4 4 . 3 D 12.如图,某公园内有一个半圆形湖面,O为圆心,半径为1千米,现规划在OCD区域种荷花,在OBD区域修建 水上项目.若AOC=CO

    5、D,且使四边形 OCDB 面积最大, 171 . 8 A 331 . 8 B 171 . 6 C 331 . 6 D 二填空题:本题共 4 小题,每小题 5 分,共 20 分 13. 能说明命题“xR 且 x0, 1 2x x ”是假命题的 x 的值可以是_. (写出一个即可) 14.已知F是双曲线C: 2 2 2 1(0) y xb b 的右焦点,点P在C上,O为坐标原点,若| 2 ,|, 3 OPbPOF 则 C 的离心率为_. 15.河图洛书是中国古代流传下来的神秘图案,被誉为“宇宙魔方”,九宫格源于河图洛书如图是由 9 个单位正 方形(边长为1个单位的正方形)组成的九宫格,一个质点从A

    6、点沿单位正方形的边以最短路径运动到B点,共有 3 6 C 种不同的路线,则在这些路线中,该质点经过 p 点的概率为_. 16. 定义域为 R 的偶函数 f(x)满足 f(1+x)+ f(1-x)=0, 当 x0,1)时,( )sin, 2 x f x 给出下列四个结论: |f(x)|1; 若 12 ( )()0,f xf x则 12 0xx 函数 f(x)在(0,4)内有且仅有 3 个零点; 若 123, xxx且 123 ( )()(),f xf xf x则 31 xx的最小值为 4. 其中,正确结论的序号是_. 注:本题给出的结论中,有多个符合题目要求全部选对得 5 分,不选或有错选得 0

    7、 分,其他得 3 分 三解答题:共70分解答应写出文字说明证明过程或演算步骤第1721题为必考题,每个试题考生都必须作 答第 2223 题为选考题,考生根据要求作答 (一)必考题:共 60 分 17. (12 分) 已知三棱柱 111, ABCABC底面 ABC 为等边三角形,侧棱 1 AA 平面 ABC,D 为 1 CC中点, 11 2,AAABAB和 1 AB交于点 O. (1)证明:OD/平面 ABC ; (2)求 AB 与平面 1 ABD所成角的正弦值. 18. (12 分) 2020 年 1 月,教育部关于在部分高校开展基础学科招生改革试点工作的意见印发,自 2020 年起,在部分高

    8、校开展基础学科招生改革试点(也称“强基计划”) .强基计划聚焦高端芯片与软件智能科 技新材料先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重 大战略需求且综合素质优秀或基础学科拔尖的学生新材料产业是重要的战略性新兴产业,下图是我国 2011- 2019 年中国新材料产业市场规模及增长趋势图其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材 料产业市场规模年增长率(%). (1)求从 2012 年至 2019 年,每年新材料产业市场规模年增长量的平均数(精确到 0.1); (2)从2015年至2019年中随机挑选两年,求两年中至少有一-年新材

    9、料产业市场规模年增长率超过20%的概率; (3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大. (结论不要求证明) 19. (12 分) ABC 的角 A, B, C 的对边分别为 a, b, c,已知 222 sinsinsinsinsinsinBCABBC. (1)求 A; (2)从三个条件:3a 3b ABC 的面积为3中任选一个作为已知条件,求ABC 周长的取值 范围 注:如果选择多个条件分别解答,按第一个解答计分 20. (12 分) 已知函数 2 ( )(2)ln(0)f xaxaxa x . (1)讨论 f(x)的单调性; (2) 设 g xf xlna, 若 g(

    10、x)存在两个极值点 12 ,x x求 12 ( )()g xg x的最小值 21. (12 分) 椭圆规是画椭圆的一种工具,如图 1 所示,在十字形滑槽上各有一个活动滑标 M, N,有一根旋杆将两个滑标连 成一体, |MN|=4, D 为旋杆上的一点,且在 M,N 两点之间,且|ND|=3|MD|,当滑标 M 在滑槽 EF 内作往复运动,滑标 N 在滑槽 GH 内随之运动时,将笔尖放置于 D 处可画出椭圆,记该椭圆为 C.如图 2 所示,设 EF 与 GH 交于点 O,以 EF 所在的直线为 x 轴,以 GH 所在的直线为 y 轴,建立平面直角坐标系. (1)求椭圆 C 的方程; (2)设 1

    11、2 ,A A是椭圆 C 的左右顶点,点 P 为直线 x=6 上的动点,直线 12 ,APA P分别交椭圆于 Q,R 两点,求四 边形 12 AQA R面积的最大值. (二)选考题:共 10 分请考生在第 2223 题中任选一题作答并用铅笔在答题卡选考题区域内把所选的题号涂 黑如果多做,则按所做的第一题计分 22. 【选修 4- -4:坐标系与参数方程】 (10 分) 在平面直角坐标系 xOy 中,直线 l 的参数方程为 12 , 22 32 22 xt yt (t 为参数),以原点 O 为极点,x 轴的非负半轴 为极轴建立极坐标系. (1)求直线 l 的极坐标方程; (2)设动点 M 的极坐标为(,),射线 OM 与直线 l 相交于点 A,且满足|OA| |OM|=4,求点 M 轨迹的极坐标方程. 23. 选修 4- -5: 不等式选讲 (10 分) 已知 f(x)=2|x+1|+|x-1|. (1)解不等式 f(x)4; (2)设 f(x) 的最小值为 m,实数 a,b, c 满足 222 ,abcm证明:|6.abc


    注意事项

    本文(云南省昆明市2020届高三“三诊一模”教学质量检测数学试题(理科)含答案)为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开