欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年4月贵州省高考数学模拟试卷(理科)含答案解析

    • 资源ID:138153       资源大小:477.11KB        全文页数:30页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年4月贵州省高考数学模拟试卷(理科)含答案解析

    1、2020 年高考数学(年高考数学(4 月份)模拟试卷(理科)月份)模拟试卷(理科) 一、选择题(共 12 小题). 1已知集合 U0,1,2,3,4,AxZ|x22x0,B1,2,3,则(UA)B ( ) A3 B0,1,2 C1,2,3 D1,2,3,4 2函数 f(x)cos2xsin2x 的最小正周期是( ) A B C2 D4 3已知直线 m平面 ,直线 n平面 ,则“”是“mn”的( ) A充分不必要条件 B必要不充分条作 C充要条件 D既不充分也不必要条件 4据记载,欧拉公式 eixcosx+isinx(xR)是由瑞士著名数学家欧拉发现的,该公式被誉 为“数学中的天桥”特别是当 x

    2、 时,得到一个令人着迷的优美恒等式 ei+10,将 数学中五个重要的数(自然对数的底 e,圆周率 ,虚数单位 i,自然数的单位 1 和零元 0)联系到了一起,有些数学家评价它是“最完美的数学公式”根据欧拉公式,若复数 的共轭复数为 ,则 ( ) A B C D 5 的展开式中 x3的系数为( ) A10 B10 C5 D5 6若 , , 2,则实数 a,b,c 之间的大小关系为( ) Aacb Babc Ccab Dbac 7某保险公司为客户定制了 5 个险种:甲,一年期短险;乙,两全保险;丙,理财类保险; 丁,定期寿险;戊,重大疾病保险,各种保险按相关约定进行参保与理赔该保险公司 对 5 个

    3、险种参保客户进行抽样调查,得出如下的统计图例: 以下四个选项错误的是( ) A54 周岁以上参保人数最少 B1829 周岁人群参保总费用最少 C丁险种更受参保人青睐 D30 周岁以上的人群约占参保人群的 80% 8函数 f(x)(2x2x)sinxcosx 的部分图象大致是( ) A B C D 9已知抛物线 C:y22px(p0),倾斜角为 的直线交 C 于 A,B 两点,若线段 AB 中点 的纵坐标为 ,则 p 的值为( ) A B1 C2 D4 10已知一块形状为正三棱柱 ABCA1B1C1(底面是正三角形,侧棱与底面垂直的三棱柱) 的实心木材,ABAA12 ,若将该木材经过切割加工成一

    4、个球体,则此球体积的最大 值为( ) A B C D 11已知函数 f(x)|x| 3,f(x)是 f(x)的导函数 f(x)在区间(0,+)是增函数;当 x(,0)时,函数 f(x)的最大值为 1; yf(x)f(x)有 2 个零点;f(x)f(x)2 则上述判断正确的序号是( ) A B C D 12设双曲线 C: 1(a0,b0)的右焦点为 F,C 的条渐近线为 l,以 F 为圆 心的圆与 l 相交于 M,N 两点,MFNF,O 为坐标原点, (25),则双 曲线 C 的离心率的取值范围是( ) A , B , C , D , 二、填空题:本题共 4 小题,每小题 5 分,共 20 分

    5、13 已知点 P (x, y) 满足约束条件 , 则原点 O 到点 P 的距离的最小值为 14如程序框图所示,若输入 a1010,k8,n4,则输出 b 15ABC 的内角 A、B,C 的对边分别为 a,b,c,若 (bcosC+ccosB)cosAasinA, b+c8,a4,则ABC 的面积为 16 如图是由六个边长为 1 的正六边形组成的蜂巢图形, 定点 A, B 是如图所示的两个顶点, 动点 P 在这些正六边形的边上运动,则 的最大值为 三、 解答题: 共 70 分 解答应写出文字说明、 证明过程或演算步骤 第 1721 题为必考题, 每个试题考生都必须作答第 22、23 题为选考题,

    6、考生根据要求作答(一)必考题:共 60 分 172019 年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时 有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地 患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅 行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉 旅行史(有接触史),统计得到以下相关数据 (1)请将列联表填写完整 有接触史 无接触史 总计 有武汉旅行史 27 无武汉旅行史 18 总计 27 54 (2)能否在犯错误的概率不超过 0.025 的前提下认为有武汉旅行史与有确诊病例接触

    7、史 有关系? 附: ,na+b+c+d P(K2k) 0.15 0.10 0.05 0.025 0.010 k 2.072 2.706 3.841 5.024 6.635 18已知an为等差数列,各项为正的等比数列bn的前 n 项和为 Sn,2a1b12,a2+a8 10,_ 在Snbn1;a4S32S2+S1;bn2 这三个条件中任选其中一个,补充在 上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答 记分) (1)求数列an和bn的通项公式; (2)求数列an bn的前 n 项和 Tn 19 图 1 是直角梯形 ABCD, ABDC, D90, AB2, DC3,

    8、 AD , 2 以 BE 为折痕将BCE 折起,使点 C 到达 C1的位置,且 AC1 ,如图 2 (1)证明:平面 BC1E平面 ABED; (2)求直线BC1与平面AC1D所成角的正弦 值 20设 F1,F2分别是椭圆 C: (ab0)的左,右焦点,A、B 两点分别是椭 圆 C 的上、下顶点,AF1F2是等腰直角三角形,延长 AF1交椭圆 C 于 D 点,且ADF2 的周长为 (1)求椭圆 C 的方程; (2)设点 P 是椭圆 C 上异于 A、B 的动点,直线 AP、BP 与直线 l:y2 分别相交于 M、 N 两点, 点 Q (0, 5) , 试问: MNQ 外接圆是否恒过 y 轴上的定

    9、点 (异于点 Q) ? 若是,求该定点坐标;若否,说明理由 21已知函数 (1)若直线 y2x+m 与曲线 yf(x)相切,求 m 的值; (2)对任意 x(1,1),aln(x+1)f(x)0 成立,讨论实数 a 的取值 (二)选考题:共 10 分请考生在第 22、23 题中任选一题作答如果多做,则按所做的第 题计分选修 4-4:坐标系与参数方程 22 如图, 在以 O 为极点, Ox 轴为极轴的极坐标系中, 圆 C1, C2, C3的方程分别为 4sin, ,4sin( ) (1)若 C1,C2相交于异于极点的点 M,求点 M 的极坐标(0,02); (2)若直线 l:0(pR)与 C1,

    10、C3分别相交于异于极点的 A,B 两点,求|AB|的最大 值 选修 45:不等式选讲 23已知函数 f(x)|x+a+b|+|xc|的最小值为 6,a,b,cR+ (1)求 a+b+c 的值; (2)若不等式 恒成立,求实数 m 的取值范围 参考答案 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一 项是符合题目要求的 1已知集合 U0,1,2,3,4,AxZ|x22x0,B1,2,3,则(UA)B ( ) A3 B0,1,2 C1,2,3 D1,2,3,4 【分析】根据集合的基本运算即可求(UA)B; 解:U0,1,2,3,4,AxZ|x22x0

    11、0,1,2,B1,2,3, 则(UA)B3,41,2,31,2,3,4 故选:D 【点评】本题主要考查集合的基本运算,比较基础 2函数 f(x)cos2xsin2x 的最小正周期是( ) A B C2 D4 【分析】 利用二倍角的余弦公式求得 ycos2x, 再根据 yAcos (x+) 的周期等于 T , 可得结论 解:函数 ycos2xsin2xcos2x,函数的周期为 T , 故选:B 【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了 yAsin (x+)的周期等于 T ,属于基础题 3已知直线 m平面 ,直线 n平面 ,则“”是“mn”的( ) A充分不必要条件

    12、B必要不充分条作 C充要条件 D既不充分也不必要条件 【分析】根据充分条件和必要条件的定义分别进行判断即可 解:直线 m平面 ,直线 n平面 ,若 可得 m,mn; 若 mn,则 m 不一定垂直 , 与 不一定平行;“”是“mn”的充分不 必要条件 故选:A 【点评】本题主要借助于立体几何的知识来考查充分条件和必要条件的判断,掌握立体 几何的基础知识是解决本题的关键 4据记载,欧拉公式 eixcosx+isinx(xR)是由瑞士著名数学家欧拉发现的,该公式被誉 为“数学中的天桥”特别是当 x 时,得到一个令人着迷的优美恒等式 ei+10,将 数学中五个重要的数(自然对数的底 e,圆周率 ,虚数

    13、单位 i,自然数的单位 1 和零元 0)联系到了一起,有些数学家评价它是“最完美的数学公式”根据欧拉公式,若复数 的共轭复数为 ,则 ( ) A B C D 【分析】复数 cos isin ,进而得出共轭复数为 解:复数 cos isin i, 则共轭复数为 i, 故选:D 【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题 5 的展开式中 x3的系数为( ) A10 B10 C5 D5 【分析】利用二项展开式的通项公式求出展开式的通项,令 x 的指数为 3 求出 r 的值即 可求得结论 解: 的展开式的通项为 Tr+1(2)rC5rx52r 令 52r3 得 r1, 所以

    14、展开式中 x3的系数:(2)1 10 故选:B 【点评】本题考查利用二项展开式的通项公式,解决二项展开式的特定项问题 6若 , , 2,则实数 a,b,c 之间的大小关系为( ) Aacb Babc Ccab Dbac 【分析】利用对数函数和指数函数的性质求解 解: ,a2, ,0b1, ,1c2, acb, 故选:A 【点评】本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数 和指数函数的性质的合理运用 7某保险公司为客户定制了 5 个险种:甲,一年期短险;乙,两全保险;丙,理财类保险; 丁,定期寿险;戊,重大疾病保险,各种保险按相关约定进行参保与理赔该保险公司 对 5 个

    15、险种参保客户进行抽样调查,得出如下的统计图例: 以下四个选项错误的是( ) A54 周岁以上参保人数最少 B1829 周岁人群参保总费用最少 C丁险种更受参保人青睐 D30 周岁以上的人群约占参保人群的 80% 【分析】根据选项逐一对应相应的统计图即可进行判断 解:由扇形图可得,54 周岁以上参保人数最少,30 周岁以上的人群约占参保人群的 39%+33%+880%,故 A、D 对; 由折现图可知,1829 周岁人群参保费用最少,但是因为参保人数并不是最少的,故其 总费用不是最少,故 B 错误; 由柱状图可知,丁险种参保比例最高,故 C 正确; 故选:B 【点评】本题考查通过统计图进行合情推理

    16、,数形结合,属于基础题 8函数 f(x)(2x2x)sinxcosx 的部分图象大致是( ) A B C D 【分析】由函数的奇偶性,函数的零点以及特殊点的函数值即可得出选项 解:f(x)(2x2x)sin(x)cos(x)(2x2x)sinxcosxf(x),则 f(x) 为偶函数,其图象关于 y 轴对称,可排除 A; , , , ,可排除 C,D; 故选:B 【点评】本题考查利用函数性质确定函数图象,考查属数形结合思想,属于基础题 9已知抛物线 C:y22px(p0),倾斜角为 的直线交 C 于 A,B 两点,若线段 AB 中点 的纵坐标为 ,则 p 的值为( ) A B1 C2 D4 【

    17、分析】设出直线方程与抛物线联立,利用韦达定理和中点坐标公式能求出 p2 解:由题意设直线方程为:y , 联立 ,得 y26py+6pt0, 设 A(x1,y1),B(x2,y2),线段 AB 中点的纵坐标为 , 则 y1+y2 , 4 p2 故选:C 【点评】本题考查抛物线的简单性质的应用,考查转化思想以及计算能力,是中档题 10已知一块形状为正三棱柱 ABCA1B1C1(底面是正三角形,侧棱与底面垂直的三棱柱) 的实心木材,ABAA12 ,若将该木材经过切割加工成一个球体,则此球体积的最大 值为( ) A B C D 【分析】设底面正三角形的边长为 ,高为 ,可得三棱柱的体积,要使球体积的最

    18、 大值,即半径最大,即求内切球的半径,从而可得球体积的最大值 解:设球心为 O,正三棱柱的上下底面的中心分别为 O1,O2, 底面正三角形的边长为 ,高为 ,那么 OO2 由已知得 O1O2底面,在 RtOAO2中,AO2O90,可得外接球的半径 R 侧面是正方形,可得对角线为 2 , 设球心 O 到正方形中心的距离即为内切球半径 r, 可得 r , 此球体积的最大值 V 故选:C 【点评】本题考查了球的内接正三棱柱的最大体积问题,考查基本不等式的运用,属于 中档题 11已知函数 f(x)|x| 3,f(x)是 f(x)的导函数 f(x)在区间(0,+)是增函数;当 x(,0)时,函数 f(x

    19、)的最大值为 1; yf(x)f(x)有 2 个零点;f(x)f(x)2 则上述判断正确的序号是( ) A B C D 【分析】直接利用分类讨论思想的应用和函数的导数的应用求出函数的额单调区间和函 数的极值和最值,进一步求出正确的结果 解:函数 f(x)|x| 3,f(x)是 f(x)的导函数 所以当 x(0,+)时,f(x)x ,所以 ,所以f(x) 在区间(0,+)是增函数;正确 当 x(,0)时,f(x)x ,所以 ,令 f(x) 0,解得 x1,由于 x(,0), 所以 x(,1)为减函数,x(1,0)上为增函数,所以函数存在极小值即 f (1)1,即为最小值故错误 当 x0 时, ,

    20、所以所以 ,所以 f(x)在区间(0, +)是增函数;函数具有单调性 f(0) f(4)0,所以函数在(0,+)上存在一 个零点, 当 x0 时,当 x(,0)时,f(x)x ,所以 ,令 f(x)0,解得 x1,由于 x(,0), 所以 x(,1)为减函数,x(1,0)上为增函数,所以函数有 1 个零点,故 y f(x)f(x)有 2 个零点;故正确 当 x0 时, 2,故错误 故选:A 【点评】本题考查的知识要点:函数的导数的应用,利用函数的导数的应用求出函数的 单调区间和函数的最值,主要考查学生的运算能力和转换能力及思维能力,属于中档题 型 12设双曲线 C: 1(a0,b0)的右焦点为

    21、 F,C 的条渐近线为 l,以 F 为圆 心的圆与 l 相交于 M,N 两点,MFNF,O 为坐标原点, (25),则双 曲线 C 的离心率的取值范围是( ) A , B , C , D , 【分析】利用三角形 MFN 是等腰直角三角形,设圆的半径为 r,用 r 可以表示出 F 到渐 近线的距离再结合渐近线的倾斜角用 r 表示出 OM,ON,利用 (25) 消去 r 找到 与 a,b 的等量关系式,根据 的范围即可构造出 a,c 的不等式,问题可 解 解:由题意做出图象,如图所示,由题意知 MFNF,且设 MFNFr, 取 Q 为 MN 的中点, 结合MNF 为等腰直角三角形, 则 FQMN,

    22、 FQNQMQ 又在 RtOFQ 中, . , 又 (25), , 整理得: , , ,即 故选:C 【点评】本题考查了双曲线的几何性质即双曲线中 a,b,c,e 之间的关系充分利用等 腰直角三角形的几何性质结合转化思想将 的范围转化为关于 a, c 的不等关系是解决本 题的基本思想 二、填空题:本题共 4 小题,每小题 5 分,共 20 分 13 已知点 P (x, y) 满足约束条件 , 则原点 O 到点 P 的距离的最小值为 2 【分析】由约束条件作出可行域,然后判断原点到点 P 的距离的最小值,求解即可 解:点 P(x,y)满足约束条件 ,作出可行域如图, A(2,2), 原点 O 到

    23、 P 的距离的最小值为:如图所示,可知 A 与 P 重合时,|OP|2 故答案为:2 【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题 14如程序框图所示,若输入 a1010,k8,n4,则输出 b 520 【分析】根据框图的算法功能,从 i2 开始确定 b 的值,一直到 i5 时结束,此时循环 体执行了四次! 解:由题意得: i2 时,b0+08110, i3 时,b0+18218, i4 时,b8+08318, i5 时,b8+1841520 此时 i4,结束循环故输出 b 的值为 520 故答案为:520 【点评】本题考查循环结构的当型循环,注意运行循环体时 i 的

    24、值比前面执行框中的 i 大 1本题同时考查了学生的逻辑推理能力和数学运算能力,属于基础题 15ABC 的内角 A、B,C 的对边分别为 a,b,c,若 (bcosC+ccosB)cosAasinA, b+c8,a4,则ABC 的面积为 4 【分析】利用正弦定理、和差公式,同角三角函数基本关系式可得 tanA,结合 A 的范围 可求 A 的值,再利用余弦定理及其已知可得 bc,利用三角形面积计算公式即可得出 解: (bcosC+ccosB)cosAasinA, 由正弦定理可得: (sinBcosC+sinCcosB)cosAsin2A, sin(B+C)cosA sinAcosAsin2A, s

    25、inA0, cosAsinA,即 tanA , A(0,), A b+c8,a4, 由余弦定理可得:42b2+c22bccosA(b+c)22bcbc823bc,解得 bc16 SABC bcsinA 16sin 4 故答案为:4 【点评】本题考查了正弦定理,余弦定理、同角三角函数基本关系式、和差公式、三角 形面积计算公式在解三角形中的综合应用,考查了推理能力与计算能力,属于中档题 16 如图是由六个边长为 1 的正六边形组成的蜂巢图形, 定点 A, B 是如图所示的两个顶点, 动点 P 在这些正六边形的边上运动,则 的最大值为 【分析】观察图象可知点 P 在线段 MN 上运动时, 最有可能取

    26、到最大值,建立平 面直角坐标系,把向量数量积转化为坐标运算,结合函数单调性可求最值 解 : 以A为 坐 标 原 点 建 立 平 面 直 角 坐 标 系 如 图 , 则 , , , , , , , , 由图可知点 P 在线段 MN 上运动时, 最有可能取到最大值, 线段 MN: , , , 设 P(x,y),则 , , , , , 因为 , ,且 为增函数, 所以 故答案为: 【点评】本题主要考查平面向量的数量积运算,平面向量问题优先利用坐标运算进行求 解,侧重考查数学运算的核心素养 三、 解答题: 共 70 分 解答应写出文字说明、 证明过程或演算步骤 第 1721 题为必考题, 每个试题考生

    27、都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共 60 分 172019 年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时 有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地 患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅 行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉 旅行史(有接触史),统计得到以下相关数据 (1)请将列联表填写完整 有接触史 无接触史 总计 有武汉旅行史 27 无武汉旅行史 18 总计 27 54 (2)能否在犯错误的概率不超过 0.025 的

    28、前提下认为有武汉旅行史与有确诊病例接触史 有关系? 附: ,na+b+c+d P(K2k) 0.15 0.10 0.05 0.025 0.010 k 2.072 2.706 3.841 5.024 6.635 【分析】根据题意填表,计算,判断 【解答】解(1)填表如下: 有接触史 无接触史 总计 有武汉旅行史 9 18 27 无武汉旅行史 18 9 27 总计 27 27 54 (2) 65.024, 因此在犯错误的概率不超过 0.025 的前提下认为有武汉旅行史与有确诊病例接触史有关 系 【点评】本题考查独立性检验,以及平均值,属于中档题 18已知an为等差数列,各项为正的等比数列bn的前

    29、n 项和为 Sn,2a1b12,a2+a8 10,_ 在Snbn1;a4S32S2+S1;bn2 这三个条件中任选其中一个,补充在 上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答 记分) (1)求数列an和bn的通项公式; (2)求数列an bn的前 n 项和 Tn 【分析】选(1)设等差数列an的公差为 d,各项为正的等比数列bn的公比为 q 0,由 2a1b12,a2+a810,可得 a11,21+8d10,解得 d可得 an由 a4S3 2S2+S1,可得 2q22q4,解得 q (2)an bnn 2n利用错位相减法即可得出 解: 选解: (1) 设等差数

    30、列an的公差为 d, 各项为正的等比数列bn的公比为 q0, 2a1b12,a2+a810,a11,21+8d10,解得 d1 an1+n1na4S32S2+S1,a4b3+b2,2q22q4,解得 q2 bn2n (2)an bnn 2n 数列an bn的前 n 项和 Tn2+222+323+n 2n 2Tn22+223+(n1) 2n+n 2n+1 Tn2+22+23+2nn 2n+1 n 2 n+1, 解得:Tn(n1) 2n+1+2 【点评】本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推 理能力与计算能力,属于中档题 19 图 1 是直角梯形 ABCD, ABDC

    31、, D90, AB2, DC3, AD , 2 以 BE 为折痕将BCE 折起,使点 C 到达 C1的位置,且 AC1 ,如图 2 (1)证明:平面 BC1E平面 ABED; (2)求直线BC1与平面AC1D所成角的正弦 值 【分析】 (1) 如图所示, 连接 AC 与 BE 相交于点 O, 过点 B 作 BFEC 交 EC 于点 F 根 据已知可得: 四边形 ABFD 为矩形, 可得 BFAD , FC1 BCE 是等边三角形 OC EB,OAEBOA2 6 ,可得 OAOC1进而证明结论:平面 BC1E平 面 ABED (2)建立如图所示的空间直角坐标系设平面 AC1D 的法向量为: (x

    32、,y,z),则 0,可得 利用向量夹角公式可得:直线 BC 1与平面 AC1D 所成角的正 弦值|cos , | 【解答】(1)证明:如图所示,连接 AC 与 BE 相交于点 O,过点 B 作 BFEC 交 EC 于点 F DC3,CE2ED,则 DE1,EC2 四边形 ABFD 为矩形,可得 BFAD ,FC1 BC 2 BCF60BCE 是等边三角形 OC ,ECAB,ECAB2,OCEB 可得:OAOC ,OAEB OA2 6 ,OAOC1 又 OBOC1O,OA平面 BC1E 又 OA平面 ABED, 平面 BC1E平面 ABED (2)解:建立如图所示的空间直角坐标系O(0,0,0)

    33、,A( ,0,0),B(0,1, 0),D( , ,0),C1(0,0, ), ( ,0, ), ( , ,0), (0,1, ), 设平面 AC1D 的法向量为: (x,y,z),则 0, x z0, x y0,取 ( ,1, ) 直线 BC1与平面 AC1D 所成角的正弦值|cos , | 【点评】本题考查了空间位置关系、法向量的应用、向量夹角公式、数量积运算性质, 考查了推理能力与计算能力,属于中档题 20设 F1,F2分别是椭圆 C: (ab0)的左,右焦点,A、B 两点分别是椭 圆 C 的上、下顶点,AF1F2是等腰直角三角形,延长 AF1交椭圆 C 于 D 点,且ADF2 的周长为

    34、 (1)求椭圆 C 的方程; (2)设点 P 是椭圆 C 上异于 A、B 的动点,直线 AP、BP 与直线 l:y2 分别相交于 M、 N 两点, 点 Q (0, 5) , 试问: MNQ 外接圆是否恒过 y 轴上的定点 (异于点 Q) ? 若是,求该定点坐标;若否,说明理由 【分析】(1)由题意由ADF2的周长为 可得 4a 的值,再由AF1F2是等腰直角 三角形可得 c,b 之间的关系,再由 a,b,c 之间的关系求出 a,b 的值,进而可得椭圆 的方程; (2)由(1)可得 A,B 的坐标,设 P 的坐标直线 AP,BP 的斜率之积为定值,设直线 AP 的方程可得直线 BP 的方程,再由

    35、椭圆可得 M,N 的坐标,可得MNQ 外接圆的圆心 E 的坐标,MNQ 外接圆恒过 y 轴上的定点(异于点 Q),设 Q 的纵坐标,可得|EQ| |EN|,解得 Q 的坐标为(0,0) 解:(1)因为:ADF2的周长为 4 ,由定义可得|AF1|+|AF2|2a,|DF1|+|DF2|2a, 所以 4a4 ,所以 a , 又因为AF1F2是等腰直角三角形,且 a2b2+c2,所以 bc1, 所以椭圆的方程为: y 21; (2)设 P(x0,y0),x00,则 y0 21, 所以直线 AP 与 BP 的斜率之积 , 设直线 AP 的斜率为 k,则直线 AP 的方程为:ykx+1,直线 BP 的

    36、方程:y x1, 由 ,可得 M( ,2),同理 N(2k,2), 假设MNQ 的外接圆恒过定点 T(0,t),t5, 则其圆心 E(k , ), 又|EQ|EN|,所以 ,解得 t0, 所以MNQ 的外接圆恒过定点(0,0) 【点评】本题考查求椭圆的方程,以线段为直径的圆的性质,及直线与椭圆的应用,属 于中档题 21已知函数 (1)若直线 y2x+m 与曲线 yf(x)相切,求 m 的值; (2)对任意 x(1,1),aln(x+1)f(x)0 成立,讨论实数 a 的取值 【分析】(1)设直线 y2x+m 与曲线 yf(x)相切于点(x0,y0),则有 ,解之可得 m 的值; (2)令 g(

    37、x)aln(x+1)f(x)1aln(x+1) 1,x(1,1),可 得 g(x) ,且 g(0)0,再令 h(x)a(x1)32(x+1),x (1,1),分(i)a0,(ii)a0 两类讨论,对任意 x(1,1),aln(x+1)f (x)0 成立,即可求得实数 a 的取值 解:(1)设直线 y2x+m 与曲线 yf(x)相切于点(x0,y0), 因为 f(x) ,2 分 则有 ,解得 ,所以 m1;5 分 (2)令 g(x)aln(x+1)f(x)1aln(x+1) 1,x(1,1), 则 g(x) ,且 g(0)07 分 因为 x(1,1), 所以(x+1)0,(x1)30,(x+1)

    38、(x1)30, 令 h(x)a(x1)32(x+1),x(1,1), (i)当 a0 时,因为 x(1,1), 所以 h(x)0,即 g(x)0,g(x)在(1,1)上单调递增,当 x(1,0)时, g(x)0,不满足题意;9 分 (ii)当 a0 时,h(1)8a0,且 h(1)4,又 h(x)3a(x1)22 0, 所以 h(x)在(1,1)上单调递减,存在 x1(1,1),使得 h(x1)0,当 x( 1,x1)时,h(x)0,即 g(x)0, 当 x(x1,1)时,h(x)0,即 g(x)0, 所以 g(x)在(1,x1)单调递减,在(x1,1)单调递增,g(x)在(1,1)上有唯 一

    39、的最小值点 x1, 因为 g(0)0,要使 g(x)0 恒成立,当且仅当 x10,又 g(x1)0, 所以 h(0)a20,即 a2, 综上所述,a212 分 【点评】本题考查 利用导数来求曲线某点的切线方程及利用导数研究函数的单调性,考 查函数与方程思想、分类讨论思想及等价转化思想的综合运用,考查逻辑推理与运算能 力,属于难题 (二)选考题:共 10 分请考生在第 22、23 题中任选一题作答如果多做,则按所做的第 题计分选修 4-4:坐标系与参数方程 22 如图, 在以 O 为极点, Ox 轴为极轴的极坐标系中, 圆 C1, C2, C3的方程分别为 4sin, ,4sin( ) (1)若

    40、 C1,C2相交于异于极点的点 M,求点 M 的极坐标(0,02); (2)若直线 l:0(pR)与 C1,C3分别相交于异于极点的 A,B 两点,求|AB|的最大 值 【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间的 进行转换 (2) 利用点到直线的距离和极径的应用及三角函数关系式的变换的应用及正弦型函数的 性质的应用求出结果 解:(1)圆 C1,C2的方程分别为 4sin, ,相交于点 M, 所以 ,由于 0,02, 所以 , 所以 2, 故点 M(2, ) (2)设 A(1,),B(2,), 所以|AB|12| 4 , 所以|AB|的最大值为 4 【点评】本

    41、题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角 函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能 力及思维能力,属于基础题型 一、选择题 23已知函数 f(x)|x+a+b|+|xc|的最小值为 6,a,b,cR+ (1)求 a+b+c 的值; (2)若不等式 恒成立,求实数 m 的取值范围 【分析】(1)运用绝对值不等式的性质:|x+m|+|x+n|x+m(x+n|mn|,结合条件 可得所求值; (2)由题意可得|2m3|不大于 的最小值,由柯西不等式求得 的最小值,再由绝对值不等式的解法可得所求范围 解:(1)由 f(x)|x+a+b|+|xc|x+a+b(xc)|a+b+c|,当(xc)(x+a+b) 0 时,取得等号, 又 a,b,cR+,可得 f(x)的最小值为 a+b+c, 则 a+b+c6; (2)由柯西不等式可得( )(a+1)+(b+2)+(c+3)(1+2+3) 236, 又 a+b+c6,可得 3, 当且仅当 a1,b2,c3 时取得等号 则|2m3|3,即32m33,解得 0m3, 故 m 的取值范围是0,3 【点评】本题考查绝对值不等式的性质和柯西不等式的运用:求最值,考查不等式恒成 立问题,注意运用转化思想,考查运算能力和推理能力,属于中档题


    注意事项

    本文(2020年4月贵州省高考数学模拟试卷(理科)含答案解析)为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开