欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2020年4月山东省济南市槐荫区中考数学模拟试卷(含答案解析)

    • 资源ID:138401       资源大小:678.69KB        全文页数:23页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020年4月山东省济南市槐荫区中考数学模拟试卷(含答案解析)

    1、2020 年中考数学(年中考数学(4 月份)模拟试卷月份)模拟试卷 一、选择题 1下面在线学习平台的图标中,是轴对称图形的是( ) A B C D 2下列调查中,最适宜采用普查的是( ) A对济南市中学生每天学习所用时间的调查 B对全国中学生心理健康现状的调查 C对济南国际机场入境人员的体温情况的调查 D对济南市初中学生课外阅读量的调查 3下列立体图形中,主视图和左视图不一样的是( ) A B C D 4内角和为 540的多边形是( ) A三角形 B四边形 C五边形 D六边形 5 如图, 四边形ABCD为O的内接四边形, 已知BOD100, 则BCD的度数为 ( ) A50 B80 C100

    2、D130 6 如图, 从O 外一点 A 引圆的切线 AB, 切点为 B, 连接 AO 并延长交圆于点 C, 连接 BC 若 A28,则ACB 的度数是( ) A28 B30 C31 D32 7古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米 2016 石,验 得米内夹谷,抽样取米一把,数得 270 粒内夹谷 30 粒,则这批米内夹谷约为( ) A222 石 B224 石 C230 石 D232 石 8某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内 三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是( ) A B C D 9 如图, 在A

    3、BC 中, CAB65, 将ABC 在平面内绕点 A 旋转到ABC的位置, 使 CCAB,则旋转角的度数为( ) A35 B40 C50 D65 10如图,在平面直角坐标系中,ABC 的顶点都在方格线的格点上,将ABC 绕点 P 顺 时针方向旋转 90,得到ABC,则点 P 的坐标为( ) A(0,4) B(1,1) C(1,2) D(2,1) 11为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了 1 分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在 2530 次的学生人数占被调查学生人数的百分比为( ) A40% B30% C20% D10

    4、% 12如图,将线段 AB 绕点 O 顺时针旋转 90得到线段 AB,那么 A(2,5)的对应 点 A的坐标是( ) A(2,5) B(5,2) C(2,5) D(5,2) 13为了解某班学生每天使用零花钱的情况,小敏随机调查了 15 名同学,结果如表: 每天用零花钱(单位:元) 1 2 3 4 5 人数 2 4 5 3 1 则这 15 名同学每天使用零花钱的众数和中位数分别是( ) A3,3 B5,2 C3,2 D3,5 14如图,A,B 的坐标为(2,0),(0,1),若将线段 AB 平移至 A1B1,则 a+b 的值为 ( ) A2 B3 C4 D5 15如图,在矩形 AOBC 中,O

    5、为坐标原点,OA、OB 分别在 x 轴、y 轴上,点 B 的坐标为 (0,3),ABO30,将ABC 沿 AB 所在直线对折后,点 C 落在点 D 处,则点 D 的坐标为( ) A(,) B(2,) C(, ) D( ,3) 16如图,将ABC 沿 BC 边上的中线 AD 平移到ABC的位置,已知ABC 的面积为 9, 阴影部分三角形的面积为 4若 AA1,则 AD 等于( ) A2 B3 C D 17如图,O 的半径为 2,AB、CD 是互相垂直的两条直径,点 P 是O 上任意一点(P 与 A、B、C、D 不重合),经过 P 作 PMAB 于点 M,PNCD 于点 N,点 Q 是 MN 的

    6、中点,当点 P 沿着圆周转过 45时,点 Q 走过的路径长为( ) A B C D 18 如图, 在矩形 ABCD 中, AB5, AD3, 动点 P 满足 SPABS矩形ABCD, 则点 P 到 A、 B 两点距离之和 PA+PB 的最小值为( ) A B C5 D 19如图,扇形 AOB 的半径为 1,AOB90,以 AB 为直径画半圆,则图中的阴影部分 的面积为( ) A B C D 20如图,在 RtACB 中,ACB90,ACBC,点 D 是 AB 上的一个动点(不与点 A, B 重合),连接 CD,将 CD 绕点 C 顺时针旋转 90得到 CE,连接 DE,DE 与 AC 相交 于

    7、点 F,连接 AE,则图中与ACE 全等或相似的三角形有( ) A1 个 B2 个 C3 个 D4 个 二、填空题(本大题共 5 个小题每小题 4 分,共 20 分把答案填在答题卡的横线上.) 21已知一个正 n 边形的每个内角都为 144,则边数 n 为 22如图,已知路灯离地面的高度 AB 为 4.8m,身高为 1.6m 的小明站在 D 处的影长为 2m, 那么此时小明离电杆 AB 的距离 BD 为 m 23一个不透明的口袋中共有 8 个白球、5 个黄球、5 个绿球、2 个红球,这些球除颜色外 都相同从口袋中随机摸出一个球,这个球是白球的概率是 24如图,OAB 与OCD 是以点 O 为位

    8、似中心的位似图形,相似比为 1:2,OCD 90,COCD,若 B(1,0),则点 C 的坐标为 25如图,在正方形 ABCD 中,E 是边 AD 的中点将ABE 沿直线 BE 翻折,点 A 落在点 F 处,联结 DF,那么EDF 的正切值是 参考答案 一、选择题(本大题共 20 个小题,每小题 4 分,共 80 分在每小题给出的四个选项中,只 有一项是符合题目要求的) 1下面在线学习平台的图标中,是轴对称图形的是( ) A B C D 【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够 互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案 解:A、不是轴对称

    9、图形,故此选项不合题意; B、不是轴对称图形,故此选项不合题意; C、不是轴对称图形,故此选项不合题意; D、是轴对称图形,故此选项符合题意; 故选:D 【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念 2下列调查中,最适宜采用普查的是( ) A对济南市中学生每天学习所用时间的调查 B对全国中学生心理健康现状的调查 C对济南国际机场入境人员的体温情况的调查 D对济南市初中学生课外阅读量的调查 【分析】直接利用抽样调查和全面调查的意义分别分析得出答案 解:A、对济南市中学生每天学习所用时间的调查,适合抽样调查,不合题意; B、对全国中学生心理健康现状的调查,适合抽样调查,不合题意;

    10、C、对济南国际机场入境人员的体温情况的调查,必须采用普查,符合题意; D、对济南市初中学生课外阅读量的调查,适合抽样调查,不合题意; 故选:C 【点评】此题主要考查了抽样调查和全面调查的意义,正确掌握相关定义是解题关键 3下列立体图形中,主视图和左视图不一样的是( ) A B C D 【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形 解:A、圆柱的主视图和左视图均为全等的长方形,不符合题意; B、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意; C、正方体的主视图和左视图均为全等的正方形,不符合题意; D、这个三棱柱的主视图是正方形,左视图是三角形,符合题意; 故选:D 【点

    11、评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从 物体的左面看得到的视图 4内角和为 540的多边形是( ) A三角形 B四边形 C五边形 D六边形 【分析】n 边形的内角和公式为(n2) 180,由此列方程求 n 解:设这个多边形的边数是 n, 则(n2) 180540, 解得 n5, 故选:C 【点评】本题考查了多边形外角与内角此题比较简单,只要结合多边形的内角和公式 来寻求等量关系,构建方程即可求解 5 如图, 四边形ABCD为O的内接四边形, 已知BOD100, 则BCD的度数为 ( ) A50 B80 C100 D130 【分析】首先根据圆周角与圆心角的关系,

    12、求出BAD 的度数;然后根据圆内接四边形 的对角互补,用 180减去BAD 的度数,求出BCD 的度数是多少即可 解:BOD100, BAD100250, BCD180BAD 18050 130 故选:D 【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 相等,都等于这条弧所对的圆心角的一半,要熟练掌握 (2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:圆 内接四边形的对角互补 圆内接四边形的任意一个外角等于它的内对角 (就是和它相 邻的内角的对角) 6 如图, 从O 外一点 A 引圆的切线 AB, 切点为 B, 连接 AO 并延长交圆于点

    13、 C, 连接 BC 若 A28,则ACB 的度数是( ) A28 B30 C31 D32 【分析】 连接 OB, 如图, 先根据切线的性质得到ABO90, 再利用互余计算出AOB 62,然后根据圆周角定理得到ACB 的度数 解:连接 OB,如图, AB 为切线, OBAB, ABO90, AOB90A902862, ACBAOB31 故选:C 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线, 必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理 7古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米 2016 石,验 得米内夹谷,抽样取米一把,数得

    14、270 粒内夹谷 30 粒,则这批米内夹谷约为( ) A222 石 B224 石 C230 石 D232 石 【分析】用总数量乘以样本中谷所占比例即可得 解:这批米内夹谷约为 2016224(石), 故选:B 【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我 们很难从一个个数字中直接看出样本所包含的信息这时,我们用频率分布直方图来表 示相应样本的频率分布,从而去估计总体的分布情况 8某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内 三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是( ) A B C D 【分析】将三个小区分

    15、别记为 A、B、C,列举出所有情况即可,看所求的情况占总情况 的多少即可 解:将三个小区分别记为 A、B、C, 列表如下: A B C A (A,A) (B,A) (C,A) B (A,B) (B,B) (C,B) C (A,C) (B,C) (C,C) 由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种, 两个组恰好抽到同一个单元的概率是, 故选:C 【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结 果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要 注意是放回试验还是不放回试验 用到的知识点为: 概率所求情况

    16、数与总情况数之比 9 如图, 在ABC 中, CAB65, 将ABC 在平面内绕点 A 旋转到ABC的位置, 使 CCAB,则旋转角的度数为( ) A35 B40 C50 D65 【分析】根据两直线平行,内错角相等可得ACCCAB,根据旋转的性质可得 AC AC,然后利用等腰三角形两底角相等求CAC,再根据CAC、BAB都是 旋转角解答 解:CCAB, ACCCAB65, ABC 绕点 A 旋转得到ABC, ACAC, CAC1802ACC18026550, CACBAB50 故选:C 【点评】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图 是解题的关键 10如图,在平面

    17、直角坐标系中,ABC 的顶点都在方格线的格点上,将ABC 绕点 P 顺 时针方向旋转 90,得到ABC,则点 P 的坐标为( ) A(0,4) B(1,1) C(1,2) D(2,1) 【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点 P 解:由图知,旋转中心 P 的坐标为(1,2), 故选:C 【点评】本题主要考查坐标与图形的变化旋转,解题的关键是掌握旋转变换的性质 11为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了 1 分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在 2530 次的学生人数占被调查学生人数的百分比为( )

    18、A40% B30% C20% D10% 【分析】根据频率直方图可以知道被调查的总人数,又在要求的范围可以很直观地由图 形看出,即可得出百分比 解: 由频率直方图可以得出, 被调查的总人数3+10+12+530 又仰卧起坐次数在 25 30 次的学生人数为 12,故百分比为 40% 【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图 获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题 12如图,将线段 AB 绕点 O 顺时针旋转 90得到线段 AB,那么 A(2,5)的对应 点 A的坐标是( ) A(2,5) B(5,2) C(2,5) D(5,2)

    19、 【分析】 由线段 AB 绕点 O 顺时针旋转 90得到线段 AB可以得出ABOAB O,AOA90,作 ACy 轴于 C,ACx 轴于 C,就可以得出ACO ACO,就可以得出 ACAC,COCO,由 A 的坐标就可以求出结论 解:线段 AB 绕点 O 顺时针旋转 90得到线段 AB, ABOABO,AOA90, AOAO 作 ACy 轴于 C,ACx 轴于 C, ACOACO90 COC90, AOACOACOCCOA, AOCAOC 在ACO 和ACO 中, , ACOACO(AAS), ACAC,COCO A(2,5), AC2,CO5, AC2,OC5, A(5,2) 故选:B 【点

    20、评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质 的运用,点的坐标的运用,解答时证明三角形全等是关键 13为了解某班学生每天使用零花钱的情况,小敏随机调查了 15 名同学,结果如表: 每天用零花钱(单位:元) 1 2 3 4 5 人数 2 4 5 3 1 则这 15 名同学每天使用零花钱的众数和中位数分别是( ) A3,3 B5,2 C3,2 D3,5 【分析】根据众数和中位数的定义分别进行解答即可 解:这 15 名同学每天使用零花钱的众数为 3 元, 中位数为 3 元, 故选:A 【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将 一组数据从

    21、小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均 数),叫做这组数据的中位数 14如图,A,B 的坐标为(2,0),(0,1),若将线段 AB 平移至 A1B1,则 a+b 的值为 ( ) A2 B3 C4 D5 【分析】直接利用平移中点的变化规律求解即可 解:由 B 点平移前后的纵坐标分别为 1、2,可得 B 点向上平移了 1 个单位, 由 A 点平移前后的横坐标分别是为 2、3,可得 A 点向右平移了 1 个单位, 由此得线段 AB 的平移的过程是:向上平移 1 个单位,再向右平移 1 个单位, 所以点 A、B 均按此规律平移, 由此可得 a0+11,b0+11, 故 a

    22、+b2 故选:A 【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移 与图形上某点的平移相同平移中点的变化规律是:横坐标右移加,左移减;纵坐标上 移加,下移减 15如图,在矩形 AOBC 中,O 为坐标原点,OA、OB 分别在 x 轴、y 轴上,点 B 的坐标为 (0,3),ABO30,将ABC 沿 AB 所在直线对折后,点 C 落在点 D 处,则点 D 的坐标为( ) A(,) B(2,) C(, ) D( ,3) 【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出 D 点坐 标 解:四边形 AOBC 是矩形,ABO30,点 B 的坐标为(0,3

    23、), ACOB3,CAB30, BCAC tan3033, 将ABC 沿 AB 所在直线对折后,点 C 落在点 D 处, BAD30,AD3, 过点 D 作 DMx 轴于点 M, CABBAD30, DAM30, DMAD, AM3cos30 , MO3, 点 D 的坐标为(,) 故选:A 【点评】 此题主要考查了翻折变换以及矩形的性质和锐角三角函数关系, 正确得出DAM 30是解题关键 16如图,将ABC 沿 BC 边上的中线 AD 平移到ABC的位置,已知ABC 的面积为 9, 阴影部分三角形的面积为 4若 AA1,则 AD 等于( ) A2 B3 C D 【分析】由 SABC9、SAEF

    24、4 且 AD 为 BC 边的中线知 SADE SAEF2,SABD SABC,根据DAEDAB 知()2,据此求解可得 解:如图, SABC9、SAEF4,且 AD 为 BC 边的中线, SADESAEF2,SABD SABC, 将ABC 沿 BC 边上的中线 AD 平移得到ABC, AEAB, DAEDAB, 则()2,即()2, 解得 AD2 或 AD(舍), 故选:A 【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点 17如图,O 的半径为 2,AB、CD 是互相垂直的两条直径,点 P 是O 上任意一点(P 与 A、B、C

    25、、D 不重合),经过 P 作 PMAB 于点 M,PNCD 于点 N,点 Q 是 MN 的 中点,当点 P 沿着圆周转过 45时,点 Q 走过的路径长为( ) A B C D 【分析】OP 的长度不变,始终等于半径,则根据矩形的性质可得 OQ1,再由走过的 角度代入弧长公式即可 解:PMAB 于点 M,PNCD 于点 N, 四边形 ONPM 是矩形, 又点 Q 为 MN 的中点, 点 Q 为 OP 的中点, 则 OQ1, 点 Q 走过的路径长 故选:A 【点评】本题考查了弧长的计算及矩形的性质,解答本题的关键是根据矩形的性质得出 点 Q 运动轨迹的半径,要求同学们熟练掌握弧长的计算公式 18

    26、如图, 在矩形 ABCD 中, AB5, AD3, 动点 P 满足 SPABS矩形ABCD, 则点 P 到 A、 B 两点距离之和 PA+PB 的最小值为( ) A B C5 D 【分析】 首先由 SPABS矩形ABCD,得出动点 P 在与 AB 平行且与 AB 的距离是 2 的直线 l 上, 作 A 关于直线 l 的对称点 E, 连接 AE, 连接 BE, 则 BE 的长就是所求的最短距离 然 后在直角三角形 ABE 中,由勾股定理求得 BE 的值,即 PA+PB 的最小值 解:设ABP 中 AB 边上的高是 h SPABS 矩形ABCD, AB hAB AD, hAD2, 动点 P 在与

    27、AB 平行且与 AB 的距离是 2 的直线 l 上,如图,作 A 关于直线 l 的对称点 E,连接 AE,连接 BE,则 BE 的长就是所求的最短距离 在 RtABE 中,AB5,AE2+24, BE, 即 PA+PB 的最小值为 故选:D 【点评】本题考查了轴对称最短路线问题,三角形的面积,矩形的性质,勾股定理, 两点之间线段最短的性质得出动点 P 所在的位置是解题的关键 19如图,扇形 AOB 的半径为 1,AOB90,以 AB 为直径画半圆,则图中的阴影部分 的面积为( ) A B C D 【分析】根据阴影部分的面积AOB 的面积+半圆的面积扇形 AOB 的面积和扇形的 面积公式 S计算

    28、即可 解:扇形 AOB 的半径为 1,AOB90, AB, 阴影部分的面积11+()2 + 故选:A 【点评】 本题考查的是阴影面积的计算, 掌握扇形的面积公式 S是解题的关键 20如图,在 RtACB 中,ACB90,ACBC,点 D 是 AB 上的一个动点(不与点 A, B 重合),连接 CD,将 CD 绕点 C 顺时针旋转 90得到 CE,连接 DE,DE 与 AC 相交 于点 F,连接 AE,则图中与ACE 全等或相似的三角形有( ) A1 个 B2 个 C3 个 D4 个 【分析】先证明ACEBCD,得CAECEF45,再证明ACEECF,最 后证明ACEADF,便可得结论 解:将

    29、CD 绕点 C 顺时针旋转 90得到 CE, CECB,ACBDCE90, BCDACE, 在ACE 和BCD 中, , ACEBCD(SAS); CAEBCEF45, ACEECF, ACEECF; FADFEC45,AFDEFC, ADFACE, DAFCAE45, ACEADF, 综上,图中与ACE 全等或相似的三角形有 3 个 故选:C 【点评】本题主要考查了等腰直角三角形的性质,旋转的性质,相似三角形的性质与判 定,全等三角形的性质与判定,图形复杂,要善于观察,不重不漏地找出符合条件的三 角形 二、填空题(本大题共 5 个小题每小题 4 分,共 20 分把答案填在答题卡的横线上.)

    30、21已知一个正 n 边形的每个内角都为 144,则边数 n 为 十 【分析】根据多边形的内角和公式(n2) 180列方程求解即可 解:由题意得,(n2) 180144 n, 解得 n10 故答案为:十 【点评】本题考查了多边形的内角与外角,熟记内角和公式并列出方程是解题的关键 22如图,已知路灯离地面的高度 AB 为 4.8m,身高为 1.6m 的小明站在 D 处的影长为 2m, 那么此时小明离电杆 AB 的距离 BD 为 4 m 【分析】利用中心投影的性质可判断CDECBA,再根据相似三角形的性质求出 BC 的长,然后计算 BCCD 即可 解:DEAB, CDECBA, ,即, CB6, B

    31、DBCCD624(m) 故答案为 4 【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线物体与投 影面平行时的投影是放大(即位似变换)的关系 23一个不透明的口袋中共有 8 个白球、5 个黄球、5 个绿球、2 个红球,这些球除颜色外 都相同从口袋中随机摸出一个球,这个球是白球的概率是 【分析】先求出袋子中球的总个数及确定白球的个数,再根据概率公式解答即可 解:袋子中球的总数为 8+5+5+220,而白球有 8 个, 则从中任摸一球,恰为白球的概率为 故答案为: 【点评】 此题考查概率的求法: 如果一个事件有 n 种可能, 而且这些事件的可能性相同, 其中事件 A 出现 m 种结

    32、果,那么事件 A 的概率 P(A) 24如图,OAB 与OCD 是以点 O 为位似中心的位似图形,相似比为 1:2,OCD 90,COCD,若 B(1,0),则点 C 的坐标为 (1,1) 【分析】首先利用等腰直角三角形的性质得出 A 点坐标,再利用位似是特殊的相似,若 两个图形ABC 和ABC以原点为位似中心,相似比是 k,ABC 上一点的坐标 是(x,y),则在ABC中,它的对应点的坐标是(kx,ky)或(kx,ky), 进而求出即可 解:OABOCD90,AOAB,COCD,等腰 RtOAB 与等腰 RtOCD 是 位似图形,点 B 的坐标为(1,0), BO1,则 AOAB, A(,)

    33、, 等腰 RtOAB 与等腰 RtOCD 是位似图形,O 为位似中心,相似比为 1:2, 点 C 的坐标为:(1,1) 故答案为:(1,1) 【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点 位似的两个图形对应点坐标之间的关系是解题的关键 25如图,在正方形 ABCD 中,E 是边 AD 的中点将ABE 沿直线 BE 翻折,点 A 落在点 F 处,联结 DF,那么EDF 的正切值是 2 【分析】由折叠可得 AEFE,AEBFEB,由折叠的性质以及三角形外角性质,即 可得到AEBEDF,进而得到 tanEDFtanAEB2 解:如图所示,由折叠可得 AEFE,AEBFEBAEF, 正方形 ABCD 中,E 是 AD 的中点, AEDEADAB, DEFE, EDFEFD, 又AEF 是DEF 的外角, AEFEDF+EFD, EDFAEF, AEBEDF, tanEDFtanAEB2 故答案为:2 【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图 形的形状和大小不变,位置变化,对应边和对应角相等


    注意事项

    本文(2020年4月山东省济南市槐荫区中考数学模拟试卷(含答案解析))为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开