欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPTX文档下载
    分享到微信 分享到微博 分享到QQ空间

    北师大版九年级下册数学《3.3 垂径定理》课件

    • 资源ID:138776       资源大小:1.35MB        全文页数:30页
    • 资源格式: PPTX        下载积分:50积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要50积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版九年级下册数学《3.3 垂径定理》课件

    1、*3.3 垂径定理,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.进一步认识圆,了解圆是轴对称图形. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点),学习目标,问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?,导入新课,情境引入,问题:如图,AB是O的一条弦, 直径CDAB, 垂足为P.你能发现图中有哪些相等的线段和劣弧? 为什么?,线段: AP=BP,O,A,B,D,P,C,讲授新课,试一试

    2、,证明:连接OA、OB、CA、CB,则OA=OB.,即AOB是等腰三角形.,ABCD,,AP=BP,,AOC=BOC.,从而AOD=BOD.,想一想: 能不能用所学过的知识证明你的结论?,垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的弧., CD是直径,CDAB,(条件), AP=BP,推导格式:,温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.,想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?,是,不是,因为没有垂直,是,不是,因为CD没有过圆心,垂径定理的几个基本图形:,归纳总结,如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对

    3、的两条弧)结论与题设交换一条,命题是真命题吗? 过圆心 ;垂直于弦; 平分弦; 平分弦所对的优弧 ; 平分弦所对的劣弧. 上述五个条件中的任何两个条件都可以推出其他三个结论吗?,思考探索,举例证明其中一种组合方法 已知: 求证:, CD是直径, CDAB,垂足为E, AE=BE,证明猜想,AC与BC相等吗? AD与BD相等吗?为什么?,如图,AB是O的一条弦,作直径CD,使AE=BE. (1)CDAB吗?为什么? (2),O,A,B,C,D,E,(1)连接AO,BO,则AO=BO,又AE=BE,AOEBOE(SSS),,AEO=BEO=90,,CDAB.,证明举例,思考:“不是直径”这个条件能

    4、去掉吗?如果不能,请举出反例.,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.,垂径定理的推论,特别说明: 圆的两条直径是互相平分的.,归纳总结,垂径定理的本质是:,满足其中任两条,必定同时满足另三条,(1)一条直线过圆心 (2)这条直线垂直于弦 (3)这条直线平分不是直径的弦 (4)这条直线平分不是直径的弦所对的优弧 (5)这条直线平分不是直径的弦所对的劣弧,例1 如图,OEAB于E,若O的半径为10cm, OE=6cm,则AB= cm.,解析:连接OA, OEAB,, AB=2AE=16cm.,16,一,典例精析,例2 如图, O的弦AB8cm ,直径CEAB于D,DC2cm,求半

    5、径OC的长.,解:连接OA, CEAB于D,,设OC=xcm,则OD=x-2,根据勾股定理,得,解得 x=5,,即半径OC的长为5cm.,x2=42+(x-2)2,,证明:作直径MNAB. ABCD,MNCD. 则AMBM,CMDM (垂直弦的直径平分弦所对的弧) AMCMBMDM ACBD,试一试:根据所学新知,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗?,解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.,经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高., AB=37m,CD=7.23m., AD= AB=18.

    6、5m,OD=OC-CD=R-7.23.,解得R27.3(m).,即主桥拱半径约为27.3m.,R2=18.52+(R-7.23)2,例4如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,设这段弯路的半径为Rm,则OF=(R-90)m.,根据勾股定理,得,解得R=545.,这段弯路的半径约为545m.,如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为_.,2cm或12cm,针对训练,在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形

    7、高h的计算题,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.,涉及垂径定理时辅助线的添加方法,弦a,弦心距d,弓形高h,半径r之间有以下关系:,弓形中重要数量关系,d+h=r,1.已知O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为 .,5cm,2.O的直径AB=20cm, BAC=30,则弦AC= .,当堂练习,3.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又 AC=AB, AE=AD, 四边形ADOE为正方形.,4.已知:如图,在以O为圆心的两个同心圆中,大圆

    8、的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?,理由:过O作OEAB,垂足为E, 则AEBE,CEDE。 AECEBEDE 即 ACBD.,解:AC=BD,6.(分类讨论题)已知O的半径为10cm,弦MNEF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为 .,14cm或2cm,5. 如图,在ABC中,已知ACB=130,BAC=20,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为_,7.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB=6m,弓形的高EF=2m,现设计安装玻璃,请帮工程师求出弧AB所在圆O的半径,解:弓形的跨度AB=6m,EF

    9、为弓形的高, OEAB于F,AF= AB=3m, 设AB所在圆O的半径为r,弓形的高EF=2m, AO=r,OF=r-2, 在RtAOF中,由勾股定理可知:AO2=AF2+OF2, 即r2=32+(r-2)2,解得r= m 即,AB所在圆O的半径为 m,拓展提升: 如图,O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围 .,3cmOP5cm,垂径定理,内容,推论,辅助线,一条直线满足:过圆心;垂直于弦; 平分弦(不是直径); 平分弦所对的优弧;平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”),垂直于弦的直径平分这条弦, 并且平分弦所对的弧.,两条辅

    10、助线: 连半径,作弦心距,构造Rt利用勾股定理计算或建立方程.,基本图形及变式图形,课堂小结,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教

    11、学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,


    注意事项

    本文(北师大版九年级下册数学《3.3 垂径定理》课件)为本站会员(狮***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开