欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    1.6 三角函数模型的简单应用 学案(含答案)

    • 资源ID:147683       资源大小:422.90KB        全文页数:7页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.6 三角函数模型的简单应用 学案(含答案)

    1、 1.6 三角函数模型的简单应用三角函数模型的简单应用 学习目标 1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象 的重要函数模型 知识点 利用三角函数模型解释自然现象 在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人 的情绪、体力、智力等心理、生理状况都呈现周期性变化 1利用三角函数模型解决实际问题的一般步骤 第一步:阅读理解,审清题意 读题要做到逐字逐句,读懂题中的文字,理解题目所反映的实际背景,在此基础上分析出已 知什么、求什么,从中提炼出相应的数学问题 第二步:收集、整理数据,建立数学模型 根据收集到的数据找出变化规律,运用已掌

    2、握的三角函数知识、物理知识及相关知识建立关 系式,将实际问题转化为一个与三角函数有关的数学问题,即建立三角函数模型,从而实现 实际问题的数学化 第三步:利用所学的三角函数知识对得到的三角函数模型予以解答 第四步:将所得结论转译成实际问题的答案 2三角函数模型的建立程序 如图所示: 题型一 三角函数模型在物理中的应用 例 1 一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位 移 S(单位:cm)与时间 t(单位:s)的函数关系是 S6sin 2t 6 . (1)画出它的图象; (2)回答以下问题: 小球开始摆动(即 t0),离开平衡位置是多少? 小球摆动时,离开平衡位置

    3、的最大距离是多少? 小球来回摆动一次需要多少时间? 考点 三角函数模型的应用 题点 三角函数在天文、物理学方面的应用 解 (1)周期 T2 21(s) 列表: 2t 6 6 2 3 2 2 2 6 t 0 1 6 5 12 2 3 11 12 1 6sin 2t 6 3 6 0 6 0 3 描点画图: (2)小球开始摆动(即 t0),离开平衡位置为 3 cm. 小球摆动时离开平衡位置的最大距离是 6 cm. 小球来回摆动一次需要 1 s(即周期) 反思感悟 此类问题的解决关键是将图形语言转化为符号语言,其中,读图、识图、用图是 数形结合的有效途径 跟踪训练 1 如图是一个简谐运动的图象,则下列

    4、判断正确的是( ) A该质点的振动周期为 0.7 s B该质点的振幅为5 cm C该质点在 0.1 s 和 0.5 s 时的振动速度最大 D该质点在 0.3 s 和 0.7 s 时的加速度为零 考点 三角函数模型的应用 题点 三角函数在天文、物理学方面的应用 答案 D 解析 由图象及简谐运动的有关知识知 T0.8 s, A5 cm, 当 t0.1 s 及 t0.5 s 时, v0, 故排除选项 A,B,C. 题型二 三角函数模型在生活中的应用 例 2 如图所示,游乐场中的摩天轮匀速转动,每转一圈需要 12 分钟,其中心 O 距离地面 40.5 米,半径为 40 米如果你从最低处登上摩天轮,那么

    5、你与地面的距离将随时间的变化而 变化,以你登上摩天轮的时刻开始计时,请解答下列问题: (1)求出你与地面的距离 y(米)与时间 t(分钟)的函数关系式; (2)当你第 4 次距离地面 60.5 米时,用了多长时间? 考点 三角函数模型的应用 题点 三角函数在日常生活中的应用 解 (1)由已知可设 y40.540cos t,t0, 由周期为 12 分钟可知, 当 t6 时, 摩天轮第 1 次到达最高点, 即此函数第 1 次取得最大值, 所以 6,即 6, 所以 y40.540cos 6t(t0) (2)设转第 1 圈时,第 t0分钟时距离地面 60.5 米 由 60.540.540cos 6t0

    6、,得 cos 6t0 1 2, 所以 6t0 2 3 或 6t0 4 3 , 解得 t04 或 t08, 所以 t8(分钟)时,第 2 次距地面 60.5 米, 故第 4 次距离地面 60.5 米时,用了 12820(分钟) 反思感悟 解决三角函数的实际应用问题必须按照一般应用题的解题步骤执行:(1)认真审题, 理清问题中的已知条件与所求结论(2)建立三角函数模型,将实际问题数学化(3)利用三角 函数的有关知识解决关于三角函数的问题,求得数学模型的解(4)根据实际问题的意义,得 出实际问题的解(5)将所得结论返回、转译成实际问题的答案 跟踪训练 2 如图所示,摩天轮的半径为 40 m,O 点距

    7、地面的高度为 50 m,摩天轮做匀速转 动,每 3 min 转一圈,摩天轮上的 P 点的起始位置在最低点处 (1)试确定在时刻 t min 时,P 点距离地面的高度; (2)在摩天轮转动的一圈内,有多长时间 P 点距离地面超过 70 m? 考点 三角函数模型的应用 题点 三角函数在日常生活中的应用 解 (1)设 t min 时 P 距地面的高度为 y,依题意得 y40sin 2 3 t 2 50,t0. (2)令 40sin 2 3 t 2 5070, 则 sin 2 3 t 2 1 2, 2k 6 2 3 t 22k 5 6 (kZ), 2k2 3 2 3 t2k4 3 (kZ), 3k1t

    8、3k2(kZ) 令 k0,得 1ts2 Bs1s2 Cs1s2 D不能确定 考点 三角函数模型的应用 题点 三角函数在天文、物理学方面的应用 答案 C 2电流 I(A)随时间 t(s)变化的关系式为 I2sin 100t,t(0,),则电流 I 变化的周期是 ( ) A. 1 100 B100 C. 1 50 D50 考点 三角函数模型的应用 题点 三角函数在天文、物理学方面的应用 答案 C 3如图,某港口一天 6 时到 18 时的水深变化曲线近似满足函数 y3sin 6x k,据此函 数可知,这段时间水深(单位:m)的最大值为( ) A5 B6 C8 D10 考点 三角函数模型的应用 题点

    9、三角函数在日常生活中的应用 答案 C 解析 由图象知 ymin2. 因为 ymin3k,所以3k2,解得 k5, 所以这段时间水深的最大值是 ymax3k358,故选 C. 4已知某种交流电电流 I(A)随时间 t(s)的变化规律可以用函数 I5 2sin 100t 2 ,t0, )表示,则这种交流电电流在 0.5 s 内往复运行_次 考点 三角函数模型的应用 题点 三角函数在天文、物理方面的应用 答案 25 解析 周期 T 2 100 1 50(s), 频率为每秒 50 次, 0.5 s 往复运行 25 次 5某实验室一天的温度(单位:)随时间 t(单位:h)的变化近似满足函数关系:f(t)10 2sin 12t 3 ,t0,24) (1)求实验室这一天的最大温差; (2)若要求实验室温度不高于 11,则在哪段时间实验室需要降温? 考点 三角函数模型的应用 题点 三角函数在日常生活中的应用 解 (1)因为 f(t)102sin 12t 3 , 又 0t24, 所以 3 12t 311 时实验室需要降温 由(1)得 f(t)102sin 12t 3 , 故有 102sin 12t 3 11, 即 sin 12t 3 1 2. 又 0t24,因此7 6 12t 3 11 6 , 即 10t18. 故在 10 时至 18 时实验室需要降温 解三角函数应用问题的基本步骤


    注意事项

    本文(1.6 三角函数模型的简单应用 学案(含答案))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开