欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    1.2(第1课时)空间向量基本定理 同步练习(含答案)

    • 资源ID:152179       资源大小:259.64KB        全文页数:7页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.2(第1课时)空间向量基本定理 同步练习(含答案)

    1、1.21.2 空间向量基本定理空间向量基本定理 第第 1 1 课时课时 空间向量基本定理空间向量基本定理 1设 p:a,b,c 是三个非零向量;q:a,b,c为空间的一个基底,则 p 是 q 的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 解析 当非零向量 a,b,c 不共面时,a,b,c可以当基底,否则不能当基底, 当a,b,c为基底时,一定有 a,b,c 为非零向量 因此 pq,qp. 2已知 M,A,B,C 四点互不重合且任意三点不共线,则下列式子中能使向量MA ,MB ,MC 成为空间的一个基底的是( ) A.OM 1 3OA 1 3OB 1

    2、 3OC B.MA MB MC C.OM OA OB OC D.MA 2MB MC 答案 C 解析 对于选项 A,由OM xOA yOB zOC (xyz1)M,A,B,C 四点共面,知MA , MB ,MC 共面;对于选项 B,D,易知MA ,MB ,MC 共面,故选 C. 3.如图,梯形 ABCD 中,ABCD,AB2CD,点 O 为空间内任意一点,设OA a,OB b, OC c,则向量OD 可用 a,b,c 表示为( ) Aab2c Bab2c C1 2a 1 2bc D.1 2a 1 2bc 答案 D 解析 OD OC CD OC 1 2BA OC 1 2(OA OB )1 2a 1

    3、 2bc. 4已知a,b,c是空间的一个基底,若 pab,qab,则( ) Aa,p,q 是空间的一组基底 Bb,p,q 是空间的一组基底 Cc,p,q 是空间的一组基底 Dp,q 与 a,b,c 中的任何一个都不能构成空间的一组基底 答案 C 解析 假设 ck1pk2q,即 ck1(ab)k2(ab),得(k1k2)a(k1k2)bc0, 这与a,b,c是空间的一个基底矛盾,故 c,p,q 是空间的一组基底,故选 C. 5.如图,在三棱柱 ABCA1B1C1中,M 为 A1C1的中点,若AB a,AA 1 c,BCb,则下列 向量与BM 相等的是( ) A1 2a 1 2bc B.1 2a

    4、1 2bc C1 2a 1 2bc D.1 2a 1 2bc 答案 A 解析 BM BB1 B 1M AA 1 1 2(B1A1 B 1C1 ) AA1 1 2(BA BC) 1 2(ab)c 1 2a 1 2bc. 6在空间四边形 ABCD 中,AC 和 BD 为对角线,G 为ABC 的重心,E 是 BD 上一点,BE 3ED,以AB ,AC,AD 为基底,则GE _. 答案 1 3AC 1 12AB 3 4AD 解析 设 AC 的中点为 F,则GE GB BE 2 3FB 3 4BD 2 3 1 2(BC BA)3 4BD 1 3(AC 2AB)3 4(AD AB ) 1 3AC 1 12

    5、AB 3 4AD . 7 如图, 在正方体 ABCDA1B1C1D1中, 用AC , AB 1 , AD1 作为基向量, 则AC 1 _. 答案 1 2(AD1 AB 1 AC) 解析 2AC1 2AA 1 2AD 2AB (AA 1 AD )(AA1 AB)(AD AB )AD 1 AB 1 AC, AC1 1 2(AD1 AB 1 AC) 8.如图所示,已知 PA平面 ABCD,M,N 分别是 AB,PC 的中点,且 PAAD1,四边形 ABCD 为正方形,以AB ,AD ,AP 为基底,则MN _. 答案 1 2AD 1 2AP 解析 MN MA AP PN MA AP 1 2(PA A

    6、D DC ) 1 2AB AP1 2(PA AD AB ) 1 2AD 1 2AP . 9已知平行六面体 OABCOABC,且OA a,OC b,OO c. (1)用 a,b,c 表示向量AC ; (2)设 G,H 分别是侧面 BBCC 和 OABC的中心,用 a,b,c 表示GH . 解 (1)AC ACCC OC OA OO bca. (2)GH GO OH OG OH 1 2(OB OC )1 2(OB OO ) 1 2(abcb) 1 2(abcc) 1 2(cb) 10.如图,在平行六面体 ABCDA1B1C1D1中,AB a,AD b,AA1 c,E 为 A 1D1的中点, F 为

    7、 BC1与 B1C 的交点 (1)用基底a,b,c表示向量DB1 ,BE,AF; (2)化简DD1 DB CD ,并在图中标出化简结果 解 (1)DB1 DC CB1 DC BB1 BCabc. BE BAAA 1 A 1E a1 2bc. AF ABBFa1 2(bc)a 1 2b 1 2c. (2)DD1 DB CD DD1 (CD DB )DD1 CBDD 1 D 1A1 DA1 . 如图,连接 DA1,则DA1 即为所求 11 点 P 是矩形 ABCD 所在平面外一点, 且 PA平面 ABCD, M, N 分别是 PC, PD 上的点, 且PM 2 3PC ,PNND ,则满足MN x

    8、AB yAD zAP 的实数 x,y,z 的值分别为( ) A2 3, 1 6, 1 6 B.2 3, 1 6, 1 6 C2 3, 1 6, 1 6 D2 3, 1 6, 1 6 答案 D 解析 取 PC 的中点 E,连接 NE, 则MN EN EM 1 2CD (PM PE )1 2CD 2 3PC 1 2PC 1 2CD 1 6PC 1 2AB 1 6(AP ABAD )2 3AB 1 6AD 1 6AP , 比较知 x2 3,y 1 6,z 1 6,故选 D. 12.如图,点 M 为 OA 的中点,OA ,OC ,OD 为空间的一个基底,DM xOA yOC zOD , 则有序实数组(

    9、x,y,z)_. 答案 1 2,0, 1 解析 DM OM OD 1 2OA OD ,所以有序实数组(x,y,z) 1 2,0, 1 . 13已知四面体 ABCD 中,AB a2c,CD 5a6b8c,AC,BD 的中点分别为 E,F,则 EF _.(用 a,b,c 表示) 答案 3a3b5c 解析 如图所示,取 BC 的中点 G,连接 EG,FG, 则EF GF GE 1 2CD 1 2BA 1 2CD 1 2AB 1 2(5a6b8c) 1 2(a2c)3a3b5c. 14如图,已知空间四边形 OABC,M,N 分别是边 OA,BC 的中点,点 G 在 MN 上,且 MG2GN,设OA a

    10、,OB b,OC c,则向量OG _.(用 a,b,c 表示) 答案 1 6a 1 3b 1 3c 解析 OG OM MG 1 2OA 2 3MN 1 2OA 2 3(MA AB BN) 1 2OA 2 3 1 2OA OB OA 1 2BC 1 2OA 2 3 OB 1 2OA 1 2OC OB 1 6OA 1 3OB 1 3OC 1 6a 1 3b 1 3c. 15设 OABC 是四面体,G1是ABC 的重心,G 是 OG1上的一点,且 OG3GG1,若OG xOA yOB zOC ,则(x,y,z)为( ) A. 1 4, 1 4, 1 4 B. 3 4, 3 4, 3 4 C. 1 3

    11、, 1 3, 1 3 D. 2 3, 2 3, 2 3 答案 A 解析 如图所示,连接 AG1交 BC 于点 E,则点 E 为 BC 的中点, AE 1 2(AB AC) 1 2(OB 2OA OC ), AG1 2 3AE 1 3(OB 2OA OC ), OG 3GG1 3(OG 1 OG ), OG 3 4OG1 3 4(OA AG1 ) 3 4 OA 1 3OB 2 3OA 1 3OC 1 4OA 1 4OB 1 4OC ,故选 A. 16.如图所示,在空间四边形 OABC 中,G,H 分别是ABC,OBC 的重心,设OA a,OB b,OC c,用向量 a,b,c 表示向量GH . 解 因为OG OA AG OA 2 3AD OA 2 3(OD OA )1 3OA 2 3OD 1 3OA 2 3 1 2(OB OC )1 3(abc), 又OH 2 3OD 2 3 1 2(OB OC )1 3(bc), 所以GH OH OG 1 3(bc) 1 3(abc) 1 3a.


    注意事项

    本文(1.2(第1课时)空间向量基本定理 同步练习(含答案))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开