欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    第三章 数系的扩充与复数的引入 章末复习 学案(含答案)

    • 资源ID:155233       资源大小:168.39KB        全文页数:7页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第三章 数系的扩充与复数的引入 章末复习 学案(含答案)

    1、第三章 数系的扩充与复数的引入 章末复习学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义1复数的有关概念(1)复数的概念形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac且bd0(a,b,c,dR)(4)复平面建立直角坐标系来表示复数的平面,叫做复平面在复平面内x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非

    2、纯虚数(5)复数的模向量的长度叫做复数zabi的模(或绝对值),记作|z|或|abi|,即|z|abi|.2复数的几何意义(1)复数zabi复平面内的点Z(a,b)(a,bR)(2)复数zabi(a,bR)平面向量.3复数的运算(1)复数的加、减、乘、除运算法则设z1abi,z2cdi(a,b,c,dR),则加法:z1z2(abi)(cdi)(ac)(bd)i;减法:z1z2(abi)(cdi)(ac)(bd)i;乘法:z1z2(abi)(cdi)(acbd)(adbc)i;除法:i(cdi0)(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任意复数z1,z2,z3,有z1z2z2z

    3、1,(z1z2)z3z1(z2z3)4共轭复数的性质(1)zR.(2)z.(3)任一实数的共轭复数仍是它本身;反之,若z,则z是实数(4)共轭复数对应的点关于实轴对称1复数中有相等复数的概念,因此复数可以比较大小()2原点是实轴与虚轴的交点()3方程x2x10没有解()类型一复数的概念例1已知复数za2a6i(aR),分别求出满足下列条件的实数a的值:(1)z是实数;(2)z是虚数;(3)z是0.解由a2a60,解得a2或a3.由a22a150,解得a5或a3.由a240,解得a2.(1)由a22a150且a240,得a5或a3,当a5或a3时,z为实数(2)由a22a150且a240,得a5

    4、且a3且a2,当a5且a3且a2时,z是虚数(3)由a2a60,且a22a150,且a240,得a3,当a3时,z0.引申探究本例中条件不变,若z为纯虚数,是否存在这样的实数a,若存在,求出a,若不存在,说明理由解由a2a60,且a22a150,且a240,得a无解,不存在实数a,使z为纯虚数反思与感悟(1)正确确定复数的实部、虚部是准确理解复数的有关概念(如实数、虚数、纯虚数、相等复数、共轭复数、复数的模)的前提(2)两复数相等的充要条件是复数问题转化为实数问题的依据跟踪训练1复数zlog3(x23x3)ilog2(x3),当x为何实数时,(1)zR;(2)z为虚数解(1)因为一个复数是实数

    5、的充要条件是虚部为0,所以解得x4,所以当x4时,zR.(2)因为一个复数是虚数的充要条件是虚部不为0,所以解得x且x4.所以当x且x4时,z为虚数类型二复数的四则运算例2(1)计算:2 012;(2)已知z1i,求的模解(1)原式1 006i(i)1 00601i.(2)1i,的模为.反思与感悟(1)复数的除法运算是复数运算中的难点,如果遇到(abi)(cdi)的形式,首先应该写成分式的形式,然后再分母实数化(2)虚数单位i的周期性i4n1i,i4n21,i4n3i,i4n1(nN)inin1in2in30(nN)跟踪训练2计算:(i)547.解(i)547i()5(1i)22(1i)2i7

    6、16(1i)i(161)i.类型三复数问题实数化思想例3已知复数z12,i,并且|z|2,|zz1|zz2|,求z.解设zabi(a,bR),z12,i,z22i.|z|2,则2.|zz1|zz2|,即|a2bi|a(b2)i|,由得或z22i或z22i.反思与感悟设出复数z的代数形式,利用复数的分类及运算,列出方程,求得复数的实部和虚部,这是求解复数的常用思路跟踪训练3已知z是复数,z3i为实数,为纯虚数(i为虚数单位)(1)求复数z;(2)求的模解(1)设zabi(a,bR),z3ia(b3)i为实数,可得b3.又为纯虚数,a1,即z13i.(2)2i,.类型四复数的几何意义例4设复数z满

    7、足|z|1,求|z(34i)|的最值解由复数的几何意义知,|z|1表示复数z在复平面内对应的点在以原点为圆心,1为半径的圆上,因而|z(34i)|的几何意义是求此圆上的点到点C(3,4)的距离的最大值与最小值如图,易知|z(34i)|max|AC|OC|116,|z(34i)|min|BC|OC|14.反思与感悟复数和复平面内的点,以原点为起点的向量一一对应;复数加减法符合向量运算的平行四边形法则和三角形法则:|z1z2|表示复数z1,z2对应的两点Z1,Z2之间的距离跟踪训练4已知复平面内点A,B对应的复数分别是z1sin2i,z2cos2icos 2,其中(0,),设对应的复数为z.(1)

    8、求复数z;(2)若复数z对应的点P在直线yx上,求的值解(1)由题意得zz2z1cos2sin2(cos 21)i12sin2i.(2)由(1)知,点P的坐标为(1,2sin2)由点P在直线yx上,得2sin2,sin2,又(0,),sin 0,因此sin ,或.1复数z(aR)在复平面内对应的点在虚轴上,则a等于()A2 B1 C1 D2答案D解析z在复平面内对应的点在虚轴上,所以2a0,即a2.2已知f(x)x31,设i是虚数单位,则复数的虚部是()A1 B1 Ci D0答案B解析f(i)i31i1,1i,虚部是1.3已知2ai,bi(a,bR)是实系数一元二次方程x2pxq0的两根,则p

    9、,q的值为()Ap4,q5 Bp4,q5Cp4,q5 Dp4,q5答案A解析由条件知2ai,bi是共轭复数,则a1,b2,即实系数一元二次方程x2pxq0的两个根是2i,所以p(2i)(2i)4,q(2i)(2i)5.4若|z1|2,则|z3i1|的最小值为_答案1解析因为|z1|2,所以复数z在复平面内对应的点在以(1,0)为圆心,2为半径的圆上|z3i1|表示复数z在复平面内对应的点到点(1,3)的距离,因此,距离的最小值为1.5设复数z和它的共轭复数满足4z23i,求复数z.解设zabi(a,bR)因为4z23i,所以2z(2z2)3i.又2z22(abi)2(abi)4a,整体代入上式,得2z4a3i.所以zi.根据复数相等的充要条件,得解得所以zi.1对复数的概念的考查是考查复数的基础,要求准确理解虚数单位、复数、虚数、纯虚数、共轭复数、实部、虚部、复数的模等概念2对复数四则运算的考查可能性较大,要加以重视,其中复数的乘法运算与多项式的乘法运算类似;对于复数的除法运算,将分子分母同时乘以分母的共轭复数最后整理成abi(a,bR)的结构形式3对复数几何意义的考查在高考中一般会结合复数的概念、复数的加减运算考查复数的几何意义、复数加减法的几何意义求解复数,往往设出复数的代数形式,将复数问题实数化.


    注意事项

    本文(第三章 数系的扩充与复数的引入 章末复习 学案(含答案))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开