欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2.5.1 离散型随机变量的均值 学案(苏教版高中数学选修2-3)

    • 资源ID:155335       资源大小:155.77KB        全文页数:10页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2.5.1 离散型随机变量的均值 学案(苏教版高中数学选修2-3)

    1、2.5随机变量的均值和方差25.1离散型随机变量的均值学习目标1.了解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题知识点一离散型随机变量的均值设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg.思考1任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案X5,6,7.思考2当X取上述值时,对应的概率分别是多少?答案P(X5),P(X6),P(X7).思考3如何求每个西瓜的平均重量?答案567.梳理离散型随

    2、机变量的均值一般地,若离散型随机变量X的概率分布如下表:Xx1x2xnPp1p2pn(1)数学期望:E(X)x1p1x2p2xnpn.(2)性质pi0,i1,2,n;p1p2pn1.(3)数学期望的含义:它反映了离散型随机变量取值的平均水平知识点二两点分布、超几何分布、二项分布的均值1两点分布:若X01分布,则E(X)p.2超几何分布:若XH(n,M,N),则E(X).3二项分布:若XB(n,p),则E(X)np.1随机变量X的均值E(X)是个变量,其随X的变化而变化()2随机变量的均值与样本的平均值相同()3若随机变量X的均值E(X)2,则E(2X)4.()类型一离散型随机变量的均值命题角度

    3、1利用定义求随机变量的均值例1袋中有4个红球,3个白球,从袋中随机取出4个球设取出一个红球得2分,取出一个白球得1分,试求得分X的均值考点离散型随机变量的均值的概念与计算题点离散型随机变量均值的计算解X的所有可能取值为5,6,7,8.X5时,表示取出1个红球3个白球,此时P(X5);X6时,表示取出2个红球2个白球,此时P(X6);X7时,表示取出3个红球1个白球,此时P(X7);X8时,表示取出4个红球,此时P(X8).所以X的概率分布为X5678P所以E(X)5678.反思与感悟求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值(2)求出X取每个值的概率P(Xk

    4、)(3)写出X的概率分布(4)利用均值的定义求E(X)跟踪训练1某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得100分,假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响(1)求这名同学回答这三个问题的总得分X的概率分布和均值;(2)求这名同学总得分不为负分(即X0)的概率考点离散型随机变量的均值的概念与计算题点均值的计算解(1)X的可能取值为300,100,100,300.P(X300)0.230.008,P(X100)C0.80.220.096,P(X100)C0.820.210.384,P(X300)0.830.512,所

    5、以X的概率分布如下表:X300100100300P0.0080.0960.3840.512所以E(X)(300)0.008(100)0.0961000.3843000.512180(分)(2)这名同学总得分不为负分的概率为P(X0)P(X100)P(X300)0.3840.5120.896.命题角度2二项分布与两点分布的均值)例2某运动员投篮命中率为p0.6.(1)求投篮1次命中次数X的均值;(2)求重复5次投篮,命中次数Y的均值考点二项分布、两点分布的均值题点二项分布、两点分布的均值解(1)投篮1次,命中次数X的概率分布如下表:X01P0.40.6则E(X)0.6.(2)由题意知,重复5次投

    6、篮,命中次数Y服从二项分布,即YB(5,0.6),E(Y)np50.63.引申探究在重复5次投篮时,命中次数为Y,随机变量5Y2.求E()解E()E(5Y2)5E(Y)253217.反思与感悟(1)常见的两种分布的均值设p为一次试验中成功的概率,则两点分布E(X)p;二项分布E(X)np.熟练应用上述两公式可大大减少运算量,提高解题速度(2)两点分布与二项分布辨析相同点:一次试验中要么发生要么不发生不同点:a随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值X0,1,2,n.b试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验跟踪训练2根据以往统计资料,某

    7、地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值考点二项分布、两点分布的均值题点二项分布的均值解设该车主购买乙种保险的概率为p,由题意知p(10.5)0.3,解得p0.6.(1)设所求概率为P1,则P11(10.5)(10.6)0.8.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.(2)每位车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2.XB(100,0.2),E(X)1000

    8、.220.X的均值是20.命题角度3超几何分布的均值例3一个口袋内有n(n3)个大小相同的球,其中有3个红球和(n3)个白球已知从口袋中随机取出一个球是红球的概率是.不放回地从口袋中随机取出3个球,求取到白球的个数X的均值E(X)考点超几何分布的均值题点超几何分布的均值解p,n5,5个球中有2个白球方法一白球的个数X可取0,1,2.则P(X0),P(X1),P(X2).E(X)012.方法二取到白球的个数服从参数为N5,M2,n3的超几何分布,则E().反思与感悟(1)超几何分布模型一般地,在含有M件次品的N件产品中,任取n件,其中含有X件次品,则P(Xk),k0,1,2,m,其中mminM,

    9、n,且nN,MN,n,M,NN*.(2)超几何分布均值的计算公式若一个随机变量X的分布列服从超几何分布,则E(X).跟踪训练3设在15个同类型的零件中有2个次品,每次任取1个,共取3次,并且每次取出后不再放回,若以X表示取出次品的个数,求均值E(X)考点超几何分布的均值题点超几何分布的均值解方法一P(X0),P(X1),P(X2),则E(X)012.方法二由题意可知,X服从N15,M2,n3的超几何分布,E(X).类型二均值的应用例4甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁

    10、判(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的均值考点题点解(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛,结果为甲负”,A表示事件“第4局甲当裁判”则AA1A2.P(A)P(A1A2)P(A1)P(A2).(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”则P(X0)P(B1B2A3)P(B1)P(B2)P(A3),P(X2)P(1B3)P(1)P(B3),P(X1)1P(X

    11、0)P(X2)1,E(X)0P(X0)1P(X1)2P(X2).反思与感悟解答此类题目,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出概率分布表,最后利用有关的公式求出相应的概率及均值跟踪训练4某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的概率分布和均值

    12、考点考点解(1)记事件A1从甲箱中摸出的1个球是红球,A2从乙箱中摸出的1个球是红球,B1顾客抽奖1次获一等奖,B2顾客抽奖1次获二等奖,C顾客抽奖1次能获奖由题意,A1与A2相互独立,A12与1A2互斥,B1与B2互斥,且B1A1A2,B2A121A2,CB1B2.因为P(A1),P(A2),所以P(B1)P(A1A2)P(A1)P(A2),P(B2)P(A121A2)P(A12)P(1A2)P(A1)P(2)P(1)P(A2)P(A1)1P(A2)1P(A1)P(A2).故所求概率为P(C)P(B1B2)P(B1)P(B2).(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1

    13、次获一等奖的概率为,所以XB.于是P(X0)C03,P(X1)C12,P(X2)C21,P(X3)C30.故X的概率分布如下表:X0123P故X的均值为E(X)3.1现有一个项目,对该项目每投资10万元,一年后利润是1.2万元,1.18万元,1.17万元的概率分别为,.随机变量X表示对此项目投资10万元一年后的利润,则X的均值为_考点离散型随机变量的均值的概念与计算题点均值的计算答案1.18解析因为X的所有可能取值为1.2,1.18,1.17,P(X1.2),P(X1.18),P(X1.17),所以X的概率分布如下表:X1.21.181.17P则E(X)1.21.181.171.18.2若p为

    14、非负实数,随机变量的概率分布如下表:012Ppp则E()的最大值为_考点离散型随机变量的均值的概念与计算题点均值的计算答案解析由p0,p0,得0p,则E()p1.3设随机变量XB(40,p),且E(X)16,则p_.考点二项分布、两点分布的均值题点二项分布的均值答案0.4解析E(X)np40p16,得p0.4.4一次单元测验由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分一学生选对任意一题的概率为0.9,则该学生在这次测验中成绩的均值为_答案90解析设该学生在这次测验中选对的题数为X,该学生在这次测试中成绩为Y,则XB(20,0.9),Y5X.由

    15、二项分布的均值公式得E(X)200.918.由随机变量均值的线性性质得E(Y)E(5X)51890.5袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,表示所取球的标号(1)求的概率分布、均值;(2)若a4,E()1,求a的值考点离散型随机变量的均值的性质题点均值性质的应用解(1)的概率分布如下表:01234P的均值为E()01234.(2)E()aE()41,又E(),则a41,a2.1求离散型随机变量的均值的步骤(1)确定离散型随机变量X的取值(2)写出概率分布,并检查概率分布的正确与否(3)根据公式写出均值2若X,Y是两个随机变量,且YaXb,则E(Y)aE(X)b;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.


    注意事项

    本文(2.5.1 离散型随机变量的均值 学案(苏教版高中数学选修2-3))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开