欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019-2020学年浙江省温州市鹿城区八年级(上)期中数学试卷(含详细解答)

    • 资源ID:156435       资源大小:463.50KB        全文页数:25页
    • 资源格式: DOC        下载积分:30积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要30积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019-2020学年浙江省温州市鹿城区八年级(上)期中数学试卷(含详细解答)

    1、下列图形中为轴对称图形的是( )  A B  C D  2 (3 分)下列长度的四根木棒,能与 3cm,7cm 长的两根木棒钉成一个三角形的是( )  A3cm B4cm C6cm D10cm  3 (3 分)已知等腰三角形顶角的度数是 30,则底角的度数为( )  A60 B65 C70 D75  4 (3 分)对假命题“若 ab,则 a2b2”举反例,正确的反例是( )  Aa1,b0 Ba1,b1 Ca1,b2 Da1,b2  5 (3 分)由下列条件不能判断ABC 是直角三角形的是( ) &nbs

    2、p;AA:B:C3:4:5 BAB:BC:AC3:4:5  CA+BC DAB2BC2+AC2  6 (3 分)将一副三角板按如图位置摆放,若BDE75,则AMD 的度数是( )   A75 B80 C85 D90  7 (3 分)如图,点 D,E 分别在 AC,AB 上,BD 与 CE 相交于点 O,已知BC,现 添加下面的哪一个条件后,仍不能判定ABDACE 的是( )    第 2 页(共 25 页)    AADAE BABAC CBDCE DADBAEC  8 (3 分)如图,在ABC 中,AD

    3、BC,CE 平分ACB,AD 交 CE 于点 F,已知AFC 的面积为 5,FD2,则 AC 长是( )   A2.5 B4 C5 D6  9 (3 分)如图,在ABC 中,点 D 是 BC 边上的一点,E,F 分别是 AD,BE 的中点,连 结 CE,CF,若 SCEF5,则ABC 的面积为( )   A15 B20 C25 D30  10 (3 分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图” ,后人称其为“赵 爽弦图” (如图(1)所示) 图(2)由弦图变化得到,它是由八个全等的直角三角形拼 接而成的记图中正方形 ABCD,正方形 EFG

    4、H,正方形 MNKT 的面积分别为 S1,S2,S3, 若 EF4,则 S1+S2+S3的值是( )   A32 B38 C48 D80    第 3 页(共 25 页)   二、填空题(本题有二、填空题(本题有 8 小题,每小题小题,每小题 4 分,共分,共 32 分)分)  11 (4 分)命题“同旁内角互补,两直线平行”的逆命题是     12 (4 分)要测量河岸相对两点 A,B 的距离,已知 AB 垂直于河岸 BF,先在 BF 上取两点 C,D,使 CDCB,再过点 D 作 BF 的垂线段 DE,使点 A,C,E

    5、在一条直线上,如图, 测出 DE20 米,则 AB 的长是   米   13 (4 分)如图,在ABC 中,ABC 的平分线交 AC 于点 E,过 E 作 DEBC,交 AB 于 点 D,若 DB8,则 DE      14 (4 分)如图,AD,AE 分别是ABC 的角平分线和高线,且B50,C70, 则EAD      15 (4 分) 如图, 在 RtABC 中, ACB90, DE 是 AB 的垂直平分线, 若CBE20, 则A      16 (4 分)如图,在ABC 中,A

    6、BAC5,BC6,点 M 为 BC 中点,MNAC 于点 N, 则 MN 的长是       第 4 页(共 25 页)    17 (4 分)如图,在四边形 ABCD 中,B90,DEAB 交 BC 于点 E,交 AC 于点 F, CDEACB30,BCDE,则ADF      18 (4 分)如图,长方形 ABCD 中,AB4,AD3,长方形内有一个点 P,连结 AP,BP, CP,已知APB90,CPCB,延长 CP 交 AD 于点 E,则 AE      三、解答题(本题有三、

    7、解答题(本题有 5 小题,共小题,共 38 分)分)  19 (6 分)在如图所示的网格中,每个小正方形的边长均为 1 个单位  (1)请你在图 1 中画一个以格点为顶点,面积为 6 个平方单位的等腰三角形;  (2)请你在图 2 中画一个以格点为顶点,一条直角边长为的直角三角形   20 (6 分)如图,AB90,E 是 AB 上的一点,且 AEBC,12  求证:CED 是等腰直角三角形  证明:12(   )  EC   (在一个三角形中,等角对等边)    第 5 页(共 25

    8、 页)   AB90,AEBC  AEDBCE(   )  AED   (   )  BCE+BEC90     +BEC90(等量代换)  DEC90  CED 是等腰直角三角形   21 (8 分)如图,在等边三角形 ABC 中,点 D,E 分别在边 BC,AC 上,DEAB,过点 E 作 EFDE,交 BC 的延长线于点 F  (1)求F 的度数;  (2)若 CD4,求 EF 的长   22 (8 分)如图,BDBE,DE,ABCDBE9

    9、0,BFAE,且点 A,C,E 在同一条直线上  (1)求证:DABECB;  (2)若 AD3,AF1,求 BE 的长    第 6 页(共 25 页)    23 (10 分)如图,ABC 中,BABC,COAB 于点 O,AO4,BO6  (1)求 BC,AC 的长;  (2)若点 D 是射线 OB 上的一个动点,作 DEAC 于点 E,连结 OE  当点 D 在线段 OB 上时,若AOE 是以 AO 为腰的等腰三角形,请求出所有符合条件 的 OD 的长  设DE交直线BC于点F, 连结O

    10、F, CD, 若SOBF: SOCF1: 4, 则CD的长为   (直 接写出结果)      第 7 页(共 25 页)    2019-2020 学年浙江省温州市鹿城区八年级(上)期中学年浙江省温州市鹿城区八年级(上)期中数学试卷数学试卷  参考答案与试题解析参考答案与试题解析  一、选择题(本题有一、选择题(本题有 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分)  1 (3 分)下列图形中为轴对称图形的是( )  A B  C D  【分析】根据轴对称

    11、图形的概念对各选项分析判断即可得解  【解答】解:A、是轴对称图形,故本选项符合题意;  B、不是轴对称图形,故本选项不符合题意;  C、不是轴对称图形,故本选项不符合题意;  D、不是轴对称图形,故本选项不符合题意  故选:A  【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分 折叠后可重合  2 (3 分)下列长度的四根木棒,能与 3cm,7cm 长的两根木棒钉成一个三角形的是( )  A3cm B4cm C6cm D10cm  【分析】根据三角形的三边关系解答  

    12、;【解答】解:三角形的两边为 3cm,7cm,  第三边长的取值范围为 73x7+3,  即 4x10,  只有 C 符合题意,  故选:C  【点评】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边  3 (3 分)已知等腰三角形顶角的度数是 30,则底角的度数为( )    第 8 页(共 25 页)   A60 B65 C70 D75  【分析】根据等腰三角形的性质及三角形内角和定理,可求出等腰三角形底角的度数, 此题得解  【解答】解:等腰三角形顶角的度数是 30

    13、,  底角的度数为(18030)75  故选:D  【点评】本题考查了等腰三角形的性质以及三角形内角和定理,牢记等腰三角形的两个 底角相等是解题的关键  4 (3 分)对假命题“若 ab,则 a2b2”举反例,正确的反例是( )  Aa1,b0 Ba1,b1 Ca1,b2 Da1,b2  【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题  【解答】解:用来证明命题“若 ab,则 a2b2是假命题的反例可以是:a1,b 2,  因为12,但是(1)2(2)2,  所以 C 正确;

    14、  故选:C  【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需 举出一个反例即可这是数学中常用的一种方法  5 (3 分)由下列条件不能判断ABC 是直角三角形的是( )  AA:B:C3:4:5 BAB:BC:AC3:4:5  CA+BC DAB2BC2+AC2  【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可  【解答】解:A、A:B:C3:4:5,且A+B+C180,可求得C 90,故ABC 不是直角三角形;  B、不妨设 AB3x,BC4x,AC5x,此时 AB2+

    15、BC225x2AC2,故ABC 是直角三 角形;  C、A+BC,且A+B+C180,可求得C90,故ABC 是直角三角 形;  D、AB2BC2+AC2,满足勾股定理的逆定理,故ABC 是直角三角形;    第 9 页(共 25 页)   故选:A  【点评】本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关 键,可以利用定义也可以利用勾股定理的逆定理  6 (3 分)将一副三角板按如图位置摆放,若BDE75,则AMD 的度数是( )   A75 B80 C85 D90  【分析】由题

    16、意得:A30,FDE45,利用平角等于 180,可得到ADF 的 度数,在AMD 中,利用三角形内角和为 180,可以求出AMD 的度数  【解答】解:B60,  A30,  BDE75,FDE45,  ADF180754560,  AMD180306090,  故选:D  【点评】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角 之间的关系  7 (3 分)如图,点 D,E 分别在 AC,AB 上,BD 与 CE 相交于点 O,已知BC,现 添加下面的哪一个条件后,仍不能判定ABDACE 的是

    17、( )   AADAE BABAC CBDCE DADBAEC  【分析】已知BC,再加上条件BADCAE,根据全等三角形的判定定理可得 添加条件必须是边相等,故可得出答案  【解答】解:已知BC,BADCAE,    第 10 页(共 25 页)   若添加 ADAE,可利用 AAS 定理证明ABEACD,故 A 选项不合题意;  若添加 ABAC,可利用 ASA 定理证明ABEACD,故 B 选项不合题意;  若添加 BDCE,可利用 AAS 定理证明ABEACD,故 C 选项不合题意;  若添加AD

    18、BAEC,没有边的条件,则不能证明ABEACD,故 D 选项合题意  故选:D  【点评】 本题考查三角形全等的判定方法, 判定两个三角形全等的一般方法有: SSS、 SAS、 ASA、AAS、HL注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时, 必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角  8 (3 分)如图,在ABC 中,ADBC,CE 平分ACB,AD 交 CE 于点 F,已知AFC 的面积为 5,FD2,则 AC 长是( )   A2.5 B4 C5 D6  【分析】过 F 作 FHAC,根据角平分线

    19、的性质和三角形的面积公式即可得到结论  【解答】解:过 F 作 FHAC,  ADBC,CE 平分ACB,  FHDF,  FD2,  FH2,  AFC 的面积为 5,  ACFH2AC5,  AC5,  故选:C   【点评】本题考查了三角形的面积,角平分线的性质,正确的识别图形是解题的关键  9 (3 分)如图,在ABC 中,点 D 是 BC 边上的一点,E,F 分别是 AD,BE 的中点,连   第 11 页(共 25 页)   结 CE,CF,若 SCEF

    20、5,则ABC 的面积为( )   A15 B20 C25 D30  【分析】根据三角形的中线把三角形分成面积相等的两个三角形即可求解  【解答】解:根据等底同高的三角形面积相等,可得  F 是 BE 的中点,  SCFESCFB5,  SCEBSCEF+SCBF10,  E 是 AD 的中点,  SAEBSDBE,SAECSDEC,  SCEBSBDE+SCDE  SBDE+SCDE10  SAEB+SAEC10  SABCSBDE+SCDE+SAEB+SAEC20 &nbs

    21、p;故选:B  【点评】本题考查了三角形面积,解决本题的关键是利用三角形的中线把三角形分成面 积相等的两个三角形  10 (3 分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图” ,后人称其为“赵 爽弦图” (如图(1)所示) 图(2)由弦图变化得到,它是由八个全等的直角三角形拼 接而成的记图中正方形 ABCD,正方形 EFGH,正方形 MNKT 的面积分别为 S1,S2,S3, 若 EF4,则 S1+S2+S3的值是( )     第 12 页(共 25 页)   A32 B38 C48 D80  【分析】根据八个直角三角形

    22、全等,四边形 ABCD,EFGH,MNKT 是正方形,得出 CG KG,CFDGKF,再根据 S1(CG+DG) 2,S2GF2,S3(KFNF)2,S1+S2+S3 3EF2,求出 EF2的值即可  【解答】解:八个直角三角形全等,四边形 ABCD,EFGH,MNKT 是正方形,  CGKG,CFDGKF,  S1(CG+DG)2  CG2+DG2+2CGDG  GF2+2CGDG,  S2GF2EF2,  S3(KFNF)2KF2+NF22KFNF,  S1+S2+S3GF2+2CGDG+GF2+KF2+NF2

    23、2KFNF3GF23EF248,  故选:C  【点评】此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三 角形的性质,根据已知得出 3GF2144 是解决问题的关键  二、填空题(本题有二、填空题(本题有 8 小题,每小题小题,每小题 4 分,共分,共 32 分)分)  11 (4 分)命题“同旁内角互补, 两直线平行” 的逆命题是 两直线平行, 同旁内角互补   【分析】把一个命题的条件和结论互换就得到它的逆命题命题“同旁内角互补,两直 线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁 内角互补

    24、  【解答】解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角 互补,  故答案为:两直线平行,同旁内角互补  【点评】本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题 的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个 命题叫做互逆命题其中一个命题称为另一个命题的逆命题  12 (4 分)要测量河岸相对两点 A,B 的距离,已知 AB 垂直于河岸 BF,先在 BF 上取两点 C,D,使 CDCB,再过点 D 作 BF 的垂线段 DE,使点 A,C,E 在一条直线上,如图, 测出 DE20

    25、米,则 AB 的长是 20 米    第 13 页(共 25 页)    【分析】由 AB、ED 均垂直于 BD,即可得出ABCEDC90,结合 CDCB、 ACBECD 即可证出ABCEDC(ASA) ,由此即可得出 ABED20,此题得解  【解答】解:ABBD,EDAB,  ABCEDC90,  在ABC 和EDC 中,  ABCEDC(ASA) ,  ABED20  故答案为:20  【点评】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判 定定理(ASA)

    26、 本题属于基础题,难度不大,解决该题型题目时,熟练掌握全等三角形 的判定定理是关键  13 (4 分)如图,在ABC 中,ABC 的平分线交 AC 于点 E,过 E 作 DEBC,交 AB 于 点 D,若 DB8,则 DE 8    【分析】想办法证明DBEDEB,推出 DEDB 即可解决问题  【解答】解:BE 平分ABC,  DBEEBC,  DEBC,  DEBEBC,  DBEDEB,  DBDE,    第 14 页(共 25 页)   DB8,  DE8

    27、,  故答案为 8  【点评】本题考查等腰三角形的判定和性质,平行线的性质等知识,解题的关键是熟练 掌握基本知识,属于中考常考题型  14 (4 分)如图,AD,AE 分别是ABC 的角平分线和高线,且B50,C70, 则EAD 10    【分析】 根据三角形的内角和等于 180求出BAC, 再根据角平分线的定义求出BAD, 根据直角三角形两锐角互余求出BAE,然后根据EADBAEBAD 代入数据进 行计算即可得解  【解答】解:B50,C70,  BAC180BC180507060,  AD 是ABC 的角平分

    28、线,  BADBAC6030,  AE 是ABC 的高线,  BAE90B905040,  EADBAEBAD403010  故答案为:10  【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题, 准确识图找出各角度之间的关系是解题的关键  15 (4 分) 如图, 在 RtABC 中, ACB90, DE 是 AB 的垂直平分线, 若CBE20, 则A 35     第 15 页(共 25 页)    【分析】利用三角形的内角和定理求出CEB,再证明AEBA

    29、,利用三角形的外角 的性质解决问题即可  【解答】解:C90,  CEB90CBE70,  DE 垂直平分线段 AB,  EAEB,  AEBA,  CEBA+EBA,  AEBA35,  故答案为 35  【点评】本题考查直角三角形的性质,线段的垂直平分线的性质,三角形内角和定理等 知识,解题的关键是熟练掌握基本知识,属于中考常考题型  16 (4 分)如图,在ABC 中,ABAC5,BC6,点 M 为 BC 中点,MNAC 于点 N, 则 MN 的长是    【分析】连接

    30、 AM,根据等腰三角形三线合一的性质得到 AMBC,根据勾股定理求得 AM 的长,再根据在直角三角形的面积公式即可求得 MN 的长  【解答】解:连接 AM,  ABAC,点 M 为 BC 中点,  AMCM(三线合一) ,BMCM,  ABAC5,BC6,  BMCM3,  在 RtABM 中,AB5,BM3,    第 16 页(共 25 页)   根据勾股定理得:AM4,  又 SAMCMNACAMMC,  MN   【点评】综合运用等腰三角形的三线合一,勾股定理特别注

    31、意结论:直角三角形斜边 上的高等于两条直角边的乘积除以斜边  17 (4 分)如图,在四边形 ABCD 中,B90,DEAB 交 BC 于点 E,交 AC 于点 F, CDEACB30,BCDE,则ADF 45    【分析】证明ABCCED(ASA) ,得出 ACCD,由等腰三角形的性质得出求出 CDACAD75,即可得出答案  【解答】解:DEAB,  DECB90,  CDEACB30,  CDE30,  在ABC 和CED 中,  ABCCED(ASA) ,  ACCD,  C

    32、DACAD(18030)75,  ADFCDACDE45;  故答案为:45    第 17 页(共 25 页)   【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质、直角三角形的性质 以及三角形内角和定理;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键  18 (4 分)如图,长方形 ABCD 中,AB4,AD3,长方形内有一个点 P,连结 AP,BP, CP,已知APB90,CPCB,延长 CP 交 AD 于点 E,则 AE    【分析】延长 AP 交 CD 于 F,根据已知条件得到CPF+C

    33、PB90,根据矩形的性 质得到DABABC90,BCAD3,根据余角的性质得到EAPABP,推出 AEPE,根据勾股定理即可得到结论  【解答】解:延长 AP 交 CD 于 F,  APB90,  FPB90,  CPF+CPB90,  四边形 ABCD 是矩形,  DABABC90,BCAD3,  EAP+BAPABP+BAP90,  EAPABP,  CPCB3,  CPBCBP,  CPFABPEAP,  EPACPF,  EAPAPE,  AEPE

    34、,  CD2+DE2CE2,  42+(3AE)2(3+AE)2,  解得:AE,    第 18 页(共 25 页)   故答案为:   【点评】本题考查了矩形的性质,等腰三角形的判定和性质,勾股定理,正确的识别图 形是解题的关键  三、解答题(本题有三、解答题(本题有 5 小题,共小题,共 38 分)分)  19 (6 分)在如图所示的网格中,每个小正方形的边长均为 1 个单位  (1)请你在图 1 中画一个以格点为顶点,面积为 6 个平方单位的等腰三角形;  (2)请你在图 2

    35、中画一个以格点为顶点,一条直角边长为的直角三角形   【分析】 (1)利用数形结合的思想构造底为 4,高为 3 的等腰三角形即可,  (2)利用数形结合的思想构造直角边分别为,2的直角三角形即可  【解答】解: (1)如图 1 中,ABC 即为所求  (2)如图 2 中,ABC 即为所求   【点评】本题考查作图应用与设计,等腰三角形的判定和性质,勾股定理等知识,解 题的关键是灵活运用所学知识解决问题,属于中考常考题型  20 (6 分)如图,AB90,E 是 AB 上的一点,且 AEBC,12  求证:CED 是等腰直角三

    36、角形    第 19 页(共 25 页)   证明:12( 已知 )  EC DE (在一个三角形中,等角对等边)  AB90,AEBC  AEDBCE( HL )  AED BCE ( 全等三角形的性质 )  BCE+BEC90   AED +BEC90(等量代换)  DEC90  CED 是等腰直角三角形   【分析】根据12,得 DECE,利用“HL”可证明 RtADERtBEC;根据全 等三角形的性质得到AED+CEB90,则CDE 是直角三角形  【解答】

    37、证明:12(已知)  ECDE(在一个三角形中,等角对等边)  AB90,AEBC  AEDBCE(HL)  AEDBCE(全等三角形的性质)  BCE+BEC90  AED+BEC90(等量代换)  DEC90  CED 是等腰直角三角形  故答案为:已知,DE,HL,BCE,全等三角形的性质,AED  【点评】本题考查了直角三角形的判定,全等三角形的性质等知识,解题的关键是正确 寻找全等三角形解决问题,属于中考常考题型  21 (8 分)如图,在等边三角形 ABC 中,点 D,E

    38、分别在边 BC,AC 上,DEAB,过点 E   第 20 页(共 25 页)   作 EFDE,交 BC 的延长线于点 F  (1)求F 的度数;  (2)若 CD4,求 EF 的长   【分析】 (1)根据平行线的性质可得EDCB60,根据三角形内角和定理即可求 解;  (2)易证EDC 是等边三角形,再根据直角三角形的性质即可求解  【解答】解: (1)ABC 是等边三角形,  B60,  DEAB,  EDCB60,  EFDE,  DEF90,  F90E

    39、DC30;   (2)ACB60,EDC60,  EDC 是等边三角形  EDDC4,  DEF90,F30,  DF2DE8,  EFDE4  【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,熟记 30 度的锐 角所对的直角边等于斜边的一半是解题的关键  22 (8 分)如图,BDBE,DE,ABCDBE90,BFAE,且点 A,C,E 在同一条直线上  (1)求证:DABECB;  (2)若 AD3,AF1,求 BE 的长    第 21 页(共 25 页

    40、)    【分析】 (1)根据角的和差得到ABDCBE,根据全等三角形的判定定理即可得到 结论;  (2)根据全等三角形的性质得到 ABBC,ADCE,根据等腰直角三角形的性质得到 CFBFAF1,BFE90,根据勾股定理即可得到结论  【解答】 (1)证明:ABCDBE90,  ABDCBE,  BDBE,DE,  DABECB(ASA) ;  (2)解:DABECB;  ABBC,ADCE,  ABC90,BFAE,  CFBFAF1,BFE90,  EFCF+CE4,

    41、 BE  【点评】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的判定和性 质,熟练掌握全等三角形的判定和性质是解题的关键  23 (10 分)如图,ABC 中,BABC,COAB 于点 O,AO4,BO6  (1)求 BC,AC 的长;  (2)若点 D 是射线 OB 上的一个动点,作 DEAC 于点 E,连结 OE  当点 D 在线段 OB 上时,若AOE 是以 AO 为腰的等腰三角形,请求出所有符合条件 的 OD 的长  设 DE 交直线 BC 于点 F, 连结 OF, CD, 若 SOBF: SOCF1:

    42、 4, 则 CD 的长为  或 8 (直接写出结果)     第 22 页(共 25 页)    【分析】 (1)根据 BABC 可得 BC 的长,分别根据勾股定理可得 OC 和 AC 的长;  (2)分两种情况:AOOE 和 AOAE 时,分别画图,根据三角形的中位线定理和证 明三角形全等可解决问题;  分两种情况:  i)当 D 在线段 OB 上时,如图 3,过 B 作 BGEF 于 G,根据同高三角形面积的比等于 对应底边的比,得,可得 BF,根据平行线的性质证明BDGBFG,得 BDBF,最后利用勾股定理可

    43、得结论;  ii)当 D 在线段 OB 的延长线上时,如图 4,过 B 作 BGDE 于 G,同理计算可得结论  【解答】解: (1)AO4,BO6,  AB10,  BABC,  BC10,  COAB,  AOCBOC90,  由勾股定理得:CO8,  AC4;  (2)分两种情况:  i)如图 1,当 AOOE4 时,过 O 作 ONAC 于 N,    第 23 页(共 25 页)    ANEN,  DEAC,  O

    44、NDE,  AOOD4;  ii)当 AOAE4 时,如图 2,   在CAO 和DAE 中,  ,  CAODAE(AAS) ,  ADAC4,  OD44;  分两种情况:  i)当 D 在线段 OB 上时,如图 3,过 B 作 BGEF 于 G,     第 24 页(共 25 页)   SOBF:SOCF1:4,      CB10  BF  EFAC,  BGAC,  GBFACB,  

    45、AEBG,  ADBG,  ABBC,  AACB,  DBGGBF,  DGBFGB,  BDGBFG,  BDBF,  ODOBBD6,  CD;  ii)当 D 在线段 OB 的延长线上时,如图 4,过 B 作 BGDE 于 G,   同理得,  BC10,    第 25 页(共 25 页)   BF2,  同理得:BFGBDF,  BDBF2,  RtCOD 中,CD8,  综上,CD 的长为或 8  故答案为:或 8  【点评】本题考查的是全等三角形的综合题,关键是根据全等三角形的判定与性质、平 行线的性质、等腰三角形的性质和判定、三角形的面积、勾股定理等知识解答


    注意事项

    本文(2019-2020学年浙江省温州市鹿城区八年级(上)期中数学试卷(含详细解答))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开