欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    第30讲 平面向量的基本定理与坐标运算(学生版)备战2021年新高考数学微专题讲义

    • 资源ID:161709       资源大小:272.40KB        全文页数:6页
    • 资源格式: DOCX        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第30讲 平面向量的基本定理与坐标运算(学生版)备战2021年新高考数学微专题讲义

    1、 第 1 页 / 共 6 页 第第 30 讲:平面向量的基本定理与坐标运算讲:平面向量的基本定理与坐标运算 一、课程标准 1.了解平面向量的基本定理及其意义 2.掌握平面向量的正交分解及其坐标表示 3.会用坐标表示平面向量的加、减与数乘运算 4.理解用坐标表示的平面向量共线的条件 二、.基础知识回顾 1.平面向量的基本定理 如果 e1, e2是同一平面内的两个不共线向量, 那么对于这一平面内的任意向量 a, 有且只有一对实数 1, 2, 使 a1e12e2. 其中,不共线的向量 e1,e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把

    2、向量正交分解. 3.平面向量的坐标运算 (1)向量加法、减法、数乘运算及向量的模 设 a(x1,y1),b(x2,y2),则 ab(x1x2,y1y2),ab(x1x2,y1y2),a(x1,y1),|a| x21y21. (2)向量坐标的求法 若向量的起点是坐标原点,则终点坐标即为向量的坐标. 设 A(x1,y1),B(x2,y2),则AB (x 2x1,y2y1),|AB | (x 2x1) 2(y 2y1) 2. 4.平面向量共线的坐标表示 设 a(x1,y1),b(x2,y2),则 abx1y2x2y10. 常用结论与微点提醒 1.平面内不共线向量都可以作为基底,反之亦然. 2.若 a

    3、 与 b 不共线,ab0,则 0. 3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位 置,它们的坐标都是相同的. 第 2 页 / 共 6 页 三、自主热身、归纳总结 1、 设 e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A. e1e2和 e1e2 B. 3e14e2和 6e18e2 C. e12e2和 2e1e2 D. e1和 e1e2 2、已知平面向量 a(2,1),b(1,1),c(5,1),若(akb)c,则实数 k 的值为( ) A. 11 4 B. 1 2 C. 2 D. 11 4 3、已知 A(1,

    4、3)和 B(8,1),如果点 C(2a1,a2)在直线 AB 上,则 a_. 4、设 a,b 是两个不共线的非零向量,若 8akb 与 ka2b 共线,则实数 k( ) A. 4 B. 4 C. 4 D. 0 5、 在平行四边形 ABCD 中,对角线 AC 与 BD 交于点 O,P 为 CO 的中点,AB AD AP ,则 _. 6、已知 a(1,0),b(2,1) (1)当 k 为何值时,kab 与 a2b 共线? (2)若 AB 2a3b, BCamb 且 A,B,C 三点共线,求 m 的值 四、例题选讲 考点一 平面向量基本定理的应用 例 1、(2019 河北衡水中学调研)一直线 l 与

    5、平行四边形 ABCD 中的两边 AB,AD 分别交于点 E,F,且交其 对角线 AC 于点 M,若AB 2AE,AD 3AF ,AM AB AC(,R),则5 2( ) A.1 2 B.1 C.3 2 D.3 变式 1、 (1)如图(1), 在平行四边形 ABCD 中, AC, BD 相交于点 O, E 为线段 AO 的中点. 若BE BA BD (,R),则 _. 第 3 页 / 共 6 页 图(1) 图(2) (2) 如图(2),在ABC 中,BO 为边 AC 上的中线,BG 2GO ,设CD AG ,若AD 1 5AB AC(R), 则 的值为_. 变式 2、 (一题多解) (2020

    6、泉州四校联考)如图,OC 2OP ,AB 2AC,OM mOB ,ON nOA ,若 m3 8, 那么 n( ) A. 3 4 B.2 3 C.4 5 D.5 8 变式 3、 如图, 在ABC 中, 点 O 是 BC 的中点, 过点 O 的直线分别交直线 AB, AC 于不同的两点 M, N, 若AB mAM ,AC nAN (m,n0),则 1 m 4 n的最小值为_. 变式 4、 (2019 安徽安庆一中质检)如图,已知平行四边形 ABCD 的边 BC,CD 的中点分别是 K,L, 且 AK e 1, AL e 2,试用 e1,e2表示 BC , CD。 第 4 页 / 共 6 页 方法总

    7、结:平面向量基本定理的实质及应用思路 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数 乘运算 (2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成 向量的形式,再通过向量的运算来解决 考点二 、 二平面向量的坐标运算 例 1、设 A(0,1),B(1,3),C(1,5),D(0,1),则AB AC等于( ) A.2AD B.2AD C.3AD D.3AD 变式 2、(1)已知 M(3,2),N(5,1),且 MP 1 2 MN ,则 P 点的坐标为( ) A(8,1) B 1,3 2 C. 1,3 2 D(8

    8、,1) (2)向量 a,b,c 在正方形网格中的位置如图所示,若 cab(,R),则 _. 变式 3、 (2019 吉林实验中学模拟)已知 M(3,2),N(5,1),且MP 1 2 MN ,则 P 点的坐标为( ) A(8,1) B. 1,3 2 C. 1,3 2 D(8,1) 方法总结:求解向量坐标运算问题的一般思路 (1)向量问题坐标化 第 5 页 / 共 6 页 向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧 密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算 (2)巧借方程思想求坐标 向量的坐标运算主要是利用加法、减法、数乘运算法则

    9、进行,若已知有向线段两端点的坐标,则应先 求出向量的坐标,求解过程中要注意方程思想的运用 (3)妙用待定系数法求系数 利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出系 数 考点 3 用坐标表示解决共线问题 例 3 (1)已知点 A(4,0),B(4,4),C(2,6),则 AC 与 OB 的交点 P 的坐标为_. (2)若三点 A(1,5),B(a,2),C(2,1)共线,则实数 a 的值为_. 变式 1、 (1)已知向量 a(1,2),b(2,2),c(1,)若 c(2ab),则 _. (2)已知向量 OA (k,12), OB(4,5), OC(k,

    10、10),且 A,B,C 三点共线,则 k_. 变式 2、设向量 OA (1,2), OB(2m,1), OC(2n,0),m,nR,O 为坐标原点,若 A,B,C 三点共线,则 mn 的最大值为( ) A3 B2 C2 D3 方法总结:1.两平面向量共线的充要条件有两种形式:(1)若 a(x1,y1),b(x2,y2),则 ab 的充要条件 是 x1y2x2y10; (2)若 ab(b0),则 ab. 2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利 第 6 页 / 共 6 页 用坐标对应成比例来求解. 五、优化提升与真题演练 1、 (2020

    11、届山东省枣庄、滕州市高三上期末)已知向量(1,1),a ( 1,3),b (2,1)c ,且() /abc, 则( ) A3 B-3 C 1 7 D 1 7 2、 (2020 届山东省泰安市高三上期末)已知向量(3, 4)OA ,(6, 3)OB ,(2 ,1)OCm m若 ABOC,则实数m的值为( ) A 1 5 B 3 5 - C3 D 1 7 3、 (2020 届山东省滨州市三校高三上学期联考)已知向量(1,2)a ,(2, )bx,ab与b平行,则实数 x 的值为( ) A1 B2 C3 D4 4、 (2020 届山东省潍坊市高三上期中)如图,已知1OAOB,3OC ,OC OB , OA , 30OC 若OC xOAyOB,x y( ) A1 B2 C3 D4 5、【2018年高考全国III卷理数】 已知向量 = 1,2a,= 2, 2b,= 1,c 若2ca + b, 则_ 6、 【2017 年高考全国 III 卷理数】在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的 圆上.若APABAD,则的最大值为 A3 B22 C5 D2


    注意事项

    本文(第30讲 平面向量的基本定理与坐标运算(学生版)备战2021年新高考数学微专题讲义)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开