欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2021年中考数学一轮专题训练:菱形性质与判定综合(二)含答案

    • 资源ID:163932       资源大小:122.22KB        全文页数:13页
    • 资源格式: DOCX        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年中考数学一轮专题训练:菱形性质与判定综合(二)含答案

    1、20212021 年中考数学一轮专题训练:菱形性质与判定综合(二)年中考数学一轮专题训练:菱形性质与判定综合(二) 1如图,在ABCD中,点E、F分别为边AB,CD的中点,连接DE,BF,BD (1)求证:ADECBF; (2)若ADB90,求证:四边形BFDE为菱形 2如图,在ABCD中,对角线AC与BD相交于点O,过点O作EFAC,EF与AB的延长线交于点E,与CD 的延长线交于点F 求证:四边形AECF是菱形 3如图,在ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AECG,AHCF (1)求证:AEHCGF; (2)若EG平分HEF,求证:四边形EFGH是菱形 4如图,

    2、在ABC中,ABC90,D,E分别为AB,AC的中点,延长DE到点F,使EF2DE (1)求证:四边形BCFE是平行四边形; (2)当ACB60时,求证:四边形BCFE是菱形 5如图,在ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F连接AF, CE,EF平分AEC (1)求证:四边形AFCE是菱形; (2)若DAC60,AC2,求四边形AFCE的面积 6如图,在平行四边形ABCD中,BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平 行四边形ECFG,如图 1 所示 (1)证明平行四边形ECFG是菱形; (2)若ABC120,连结BG、C

    3、G、DG,如图 2 所示, 求证:DGCBGE; 求BDG的度数; (3)若ABC90,AB8,AD14,M是EF的中点,如图 3 所示,求DM的长 7如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AEBD,过点D作EDAC,两线相交于 点E (1)求证:四边形AODE是菱形; (2)连接BE,交AC于点F若BEED于点E,求AOD的度数 8如图,四边形ABCD中,ABCD,AC平分BAD,CEAD交AB于E (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断ABC的形状,并说明理由 9如图,平行四边形ABCD的对角线AC、BD相交于O,若AB5,AC8,BD6

    4、 (1)求证:平行四边形ABCD是菱形 (2)四边形ABCD的面积 10已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CFBA交PQ 于点F,连接AF (1)求证:四边形AECF是菱形; (2)若AD3,AE5,则求菱形AECF的面积 参考答案参考答案 1证明:(1)在ABCD中,ADBC,ABCD,AC, E、F分别为边AB、CD的中点, AEAB,CFDC, AECF, 在ADE和CBF中, , ADECBF(SAS); (2)ABCD,AECF, BEDF, 又ABCD, BEDF, 四边形BEDF是平行四边形, ADB90, 点E为边AB的中点, D

    5、EEBAB, 四边形BFDE为菱形 2证明:四边形ABCD是平行四边形, ABCD,OAOC, AEOCFO, 在AOE和COF中 , AOECOF(AAS), OEOF, EFAC,OEOF, AC与EF互相垂直平分, 四边形AECF是菱形 3证明:(1)四边形ABCD是平行四边形, AC 在AEH与CGF中, AEHCGF (2)四边形ABCD是平行四边形, ADBC,ABCD,BD AECG,AHCF, EBDG,HDBF BEFDGH EFHG 又AEHCGF, EHGF 四边形HEFG为平行四边形 EHFG, HEGFGE EG平分HEF, HEGFEG, FGEFEG, EFGF,

    6、 EFGH是菱形 4(1)证明:DE为AB,AC中点 DE为ABC的中位线,DEBC, DEBC, 即EFBC, EFBC, 四边形BCEF为平行四边形 (2)四边形BCEF为平行四边形, ACB60, BCCEBE, 四边形BCFE是菱形 5(1)证明:四边形ABCD是平行四边形 ADBC,AOCO, AEFCFE, 在AOE和COF中, AOECOF(AAS), OFOE, AOCO, 四边形AFCE是平行四边形; EF平分AEC, AEFCEF, CFECEF, CECF, 四边形AFCE是菱形; (2)解:由(1)得:四边形AFCE是菱形, ACEF,AOCOAC1, AOE90, D

    7、AC60, AEO30, OEAO, EF2OE2, 四边形AFCE的面积ACEF222 6解:(1)证明: AF平分BAD, BAFDAF, 四边形ABCD是平行四边形, ADBC,ABCD, DAFCEF,BAFCFE, CEFCFE, CECF, 又四边形ECFG是平行四边形, 四边形ECFG为菱形; (2)四边形ABCD是平行四边形, ABDC,ABDC,ADBC, ABC120, BCD60,BCF120 由(1)知,四边形CEGF是菱形, CEGE,BCGBCF60, CGGECE,DCG120, EGDF, BEG120DCG, AE是BAD的平分线, DAEBAE, ADBC,

    8、 DAEAEB, BAEAEB, ABBE, BECD, DGCBGE(SAS); DGCBGE, BGDG,BGEDGC, BGDCGE, CGGECE, CEG是等边三角形, CGE60, BGD60, BGDG, BDG是等边三角形, BDG60; (3)方法一:如图 3 中,连接BM,MC, ABC90,四边形ABCD是平行四边形, 四边形ABCD是矩形, 又由(1)可知四边形ECFG为菱形, ECF90, 四边形ECFG为正方形 BAFDAF, BEABDC, M为EF中点, CEMECM45, BEMDCM135, 在BME和DMC中, , BMEDMC(SAS), MBMD, D

    9、MCBME BMDBME+EMDDMC+EMD90, BMD是等腰直角三角形 AB8,AD14, BD2, DMBD 方法二:过M作MHDF于H, ABC90,四边形ABCD是平行四边形, 四边形ABCD是矩形, 又由(1)可知四边形ECFG为菱形, ECF90, 四边形ECFG为正方形, CEF45, AEBCEF45, BEAB8, CECF1486, MHCE,EMFM, CHFHCF3, MHCE3, DH11, DM 7(1)证明:AEBD,EDAC, 四边形AODE是平行四边形, 四边形ABCD是矩形, OAOCAC,OBODBD,ACBD, OAOCOD, 四边形AODE是菱形;

    10、 (2)解:连接OE,如图所示: 由(1)得:四边形AODE是菱形, AEOBOA, AEBD, 四边形AEOB是平行四边形, BEED,EDAC, BEAC, 四边形AEOB是菱形, AEABOB, ABOBOA, AOB是等边三角形, AOB60, AOD18060120 8解:(1)ABCD,CEAD, 四边形AECD为平行四边形,23, 又AC平分BAD, 12, 13, ADDC, 四边形AECD是菱形; (2)直角三角形 理由:AEEC 24, AEEB, EBEC, 5B, 又因为三角形内角和为 180, 2+4+5+B180, ACB4+590, ACB为直角三角形 9证明:(

    11、1)四边形ABCD是平行四边形, AOAC,BOBD, AC8,BD6, AO4,BO3, 32+4252, AO2+BO2AB2, AOB90, ACBD; 四边形ABCD是平行四边形, 平行四边形ABCD是菱形; (2)四边形ABCD的面积为:ACBD8624 10证明:(1)CFAB, DCFDAE, PQ垂直平分AC, CDAD, 在CDF和AED中 , CDFAED, AECF, 四边形AECF是平行四边形, PQ垂平分AC, AECE, 四边形AECF是菱形; (2)四边形AECF是菱形, ADE是直角三角形, AD3,AE5, DE4, AC2AD6,EF2DE8, 菱形AECF的面积为ACEF24


    注意事项

    本文(2021年中考数学一轮专题训练:菱形性质与判定综合(二)含答案)为本站会员(理想)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开