欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2021年高考数学大二轮专题复习第三编仿真模拟试卷(二)含答案

    • 资源ID:175403       资源大小:328.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:150积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要150积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年高考数学大二轮专题复习第三编仿真模拟试卷(二)含答案

    1、仿真模拟(二) 一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有 一项是符合题目要求的 1设全集 U 为实数集 R,已知集合 Mx|x240,Nx|x24x30,则图中阴影 部分所表示的集合为( ) Ax|x3 Cx|1x2 Dx|x3 或 x0 x|x2 或 x2,Nx|x24x30 x|1x3,又 图中阴影部分所表示的集合是(UN)M,即为x|x3 或 x2,故选 D. 2已知 i 为虚数单位,则 ii2i3i2021等于( ) Ai B1 Ci D1 答案 A 解析 由于 ii2i3i4i1i10,且 in(nN*)的周期为 4,202145051

    2、,所 以原式i.故选 A. 3槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区槟榔是重要的 中药材, 其果实被部分少数民族制作成为一种咀嚼嗜好品, 但它也被世界卫生组织国际癌症研 究机构列为致癌物清单类致癌物云南某民族中学为了解 A,B 两个少数民族班的学生咀嚼 槟榔的情况,分别从这两个班中随机抽取 5 名学生进行调查, 将他们平均每周咀嚼槟榔的颗数 作为样本,样本数据如下: A 班:9,11,14,20,31; B 班:11,12,21,25,26. 现在从 A 班不超过 19 的样本数据中随机抽取一个数据记为 a, 从 B 班不超过 21 的样本数 据中随机抽取一个数据记为 b

    3、,则 ab 的概率是( ) A1 5 B1 3 C2 3 D2 5 答案 B 解析 由题意可得,A 班不超过 19 的样本数据有 9,11,14,共 3 个,B 班不超过 21 的 样本数据有 11,12,21,共 3 个,现在从 A 班不超过 19 的样本数据中随机抽取一个数据记为 a,从 B 班不超过 21 的样本数据中随机抽取一个数据记为 b,基本事件(a,b)的总数 n33 9,ab 包含的基本事件(a,b)有(11,11),(14,11),(14,12),共 3 个,则 ab 的概率 P 3 9 1 3.故选 B. 4 周髀算经是我国古代的天文学和数学著作其中有一个问题大意为:一年有

    4、二十四 个节气, 每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).二十四个节 气及晷长变化如图所示,若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺, 一尺等于十寸),则夏至后的那个节气(小暑)晷长为( ) A五寸 B二尺五寸 C三尺五寸 D四尺五寸 答案 B 解析 设从夏至到冬至的晷长依次构成等差数列an,公差为 d,a115,a13135,则 1512d135,解得 d10.a2151025,周髀算经中所记录的小暑的晷长是 25 寸,即二尺五寸故选 B. 5当 a0 时,关于 x 的不等式 x24ax3a21)的 k 个相似图形所组成,则 k D,D 即是维数

    5、例如一个边长为 1 的正方形,将 它的边长二等分,原图的线段长度缩小为原来的1 2,原图相应地被等分为 4 个相似的小正方形, 经过计算,可得正方形的维数为 D2.已知一块海绵 G 缩小为原来的1 2,则该海绵相应地被等 分为 3 个相似的小海绵,则海绵 G 的维数约为(参考数据:lg 30.48,lg 20.30)( ) A1.2 B1.5 C1.6 D1.8 答案 C 解析 由题意,得 k3,2;由 kD,得 Dlogklg k lg lg 3 lg 2 0.48 0.301.6,故选 C. 8已知点 A,B,C 均在半径为 2的圆上,若|AB|2,则AC BC 的最大值为( ) A32

    6、2 B22 2 C4 D 2 答案 B 解析 根据圆 O 半径为 2,|AB|2,得到 OAOB,以 OB,OA 为 x,y 轴建立平面直角 坐标系, 则 A(0, 2), B( 2, 0), 设 C( 2cos , 2sin ), 则AC BC ( 2cos , 2sin 2) ( 2 cos 2, 2sin )22 2sin 4 ,当 sin 4 1 时有最大值为 22 2.故选 B. 二、选择题:本题共 4 小题,每小题 5 分,共 20 分在每小题给出的选项中,有多项符 合题目要求全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分 9若方程 x2 5t y2 t11 所表示

    7、的曲线为 C,则下面四个命题中正确的是( ) A若 1t5,则 C 为椭圆 B若 t1,则 C 为双曲线 C若 C 为双曲线,则焦距为 4 D若 C 为焦点在 y 轴上的椭圆,则 3t5 答案 BD 解析 当 t3 时,表示圆,所以 A 错误;当 t0,t15t0,即 3t0 时,f(x)x22x,则不等式 f(x)x 的解集用 区间表示为_ 答案 (3,0)(3,) 解析 设 x0,由题意可得f(x)f(x)(x)22(x)x22x,f(x) x22x,故当 xx,可得 x0, x22xx或 xx,求得 x3 或3x 13 45 1 5, 甲与丙两公司进行首场比赛时,甲公司获得“优胜公司”的

    8、概率最大 21(本小题满分 12 分)已知椭圆 E:x 2 a2 y2 b21(ab0)的焦距为 4,且过点 1, 14 2 . (1)求椭圆 E 的方程; (2)设 A(0,b),B(0,b),C(a,b),O(0,0),过 B 点且斜率为 k(k0)的直线 l 交 E 于另 一点 M,交 x 轴于点 Q,直线 AM 与直线 xa 相交于点 P.证明:PQOC. 解 (1)由题可知 2c4,即 c2, 椭圆的左、右焦点分别为(2,0),(2,0), 由椭圆的定义知 2a (12)2 14 2 2 (12)2 14 2 2 4 2, a2 2,b2a2c24, 椭圆 E 的方程为x 2 8 y

    9、2 41. 另解:由题可知 1 a2 7 2b21, a2b24, 解得 b 24, a28. (2)证明:易得 A(0,2),B(0,2),C(2 2,2), 直线 l:ykx2 与椭圆 x22y28 联立,得 (2k21)x28kx0, xM 8k 2k21,从而 M 8k 2k21, 4k22 2k21 ,Q 2 k,0 . 直线 AM 的斜率为 4k22 2k212 8k 2k21 1 2k, 直线 AM 的方程为 y 1 2kx2. 令 x2 2,得 P 2 2, 2 k 2 , 直线 PQ 的斜率 kPQ 2 k 2 2 22 k 22k 2 2k2 2( 2k1) 2( 2k1)

    10、 2 2 , 直线 OC 的斜率 kOC 2 2 2 2 2 , kPQkOC,从而 PQOC. 22(本小题满分 12 分)已知函数 f(x)x ln x1 2mx 2(mR),g(x)x1 ex 2 ex e1 e . (1)若函数 f(x)在(1,f(1)处的切线与直线 xy10 平行,求 m; (2)证明:在(1)的条件下,对任意 x1,x2(0,),f(x1)g(x2)成立 解 (1)f(x)的定义域为(0,). f(x)ln x1mx, f(1)1m, 因为 f(x)在(1,f(1)处的切线与直线 xy10 平行, 所以 1m1,即 m0. (2)证明:在(1)的条件下,f(x)x ln x,可得 f(x)ln x1, 当 x 0,1 e 时,f(x)0,f(x)单调递增, 所以 f(x)x ln x 在 x1 e时取得最小值 f 1 e 1 e, 可知 f(x1)1 e. 由 g(x)x1 ex 2 ex e1 e ,得 g(x) x ex 2 e, 令 h(x)g(x) x ex 2 e,则 h(x)1x ex , 所以当 x(0,1)时,h(x)0,h(x)单调递增, 当 x(1,)时,h(x)0,h(x)单调递减 所以 g(x)g(1)h(1)1 e. 因为 g(x)1 e0, 所以 g(x)在(0,)单调递减, 可知 g(x2)g(x2).


    注意事项

    本文(2021年高考数学大二轮专题复习第三编仿真模拟试卷(二)含答案)为本站会员(小****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开