欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    高考数学复习之2021高考仿真模拟卷1

    • 资源ID:176612       资源大小:2.39MB        全文页数:54页
    • 资源格式: PPT        下载积分:370积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要370积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学复习之2021高考仿真模拟卷1

    1、2021高考仿真模拟卷(一) 第三部分 刷模拟 一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题给出的 四个选项中,只有一项是符合题目要求的 1集合 A3,2a,Ba,b,若 AB2,则 AB( ) A1,2,3 B0,1,3 C0,1,2,3 D1,2,3,4 解析 因为 AB2,所以 2A,所以 2a2,解得 a1,故 b2, 所以 A3,2,B1,2, 所以 AB1,2,3 答案答案 解析解析 2 (2020 山东济宁邹城市第一中学高三五模)已知复数 za2i2ai 是 正实数,则实数 a 的值为( ) A0 B1 C1 D 1 解析 因为 za2i2ai2a(a21)

    2、i 为正实数,所以2a0 且 a210,解得 a1.故选 C. 答案答案 解析解析 3(2020 天津高考)设 aR,则“a1”是“a2a”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 解析 求解二次不等式 a2a 可得 a1 或 a0,据此可知,“a1” 是“a2a”的充分不必要条件故选 A. 答案答案 解析解析 4已知 Sn是等差数列an的前 n 项和,2a5a6a3,则 S7( ) A2 B.7 C.14 D28 解析 2a5a6a3a5a4,解得 a42,S77a 1a7 2 7a4 14,故选 C. 答案答案 解析解析 5(2020 山东泰安三模)

    3、函数 f(x)x3cosx 2sinx 在,上的图象大 致为( ) 答案答案 解析 因为 f(x)f(x),所以 f(x)是奇函数,排除 B,D;由 f 3 3 3 3 2 3 2 ,f 2 3 2 3 31 2 3 2 ,可知 f 2 3 f 3 ,结合图象可知选 A. 解析解析 6(2020 山东济南高三上学期期末)若抛物线 y22px(p0)的焦点到准 线的距离为 2,过焦点的直线与抛物线交于 A,B 两点,且|AB|8,则弦 AB 的中点到 y 轴的距离为( ) A2 B3 C4 D6 答案答案 解析 因为抛物线 y22px(p0)的焦点到准线的距离为 2, 所以p 2 p 2 2,

    4、故 p2, 抛物线的方程为 y24x.过焦点的直线与抛物线交于 A, B 两点, 设 A(x1,y1),B(x2,y2),由抛物线的性质,得焦点弦|AB|x1x2p,所以 8x1x22,则 x1x26,所以弦 AB 的中点到 y 轴的距离为 dx 1x2 2 6 23.故选 B. 解析解析 7(2020 河南洛阳第三次统一考试)(2x1) x 3 x 5 的展开式中 x3的系 数为( ) A180 B90 C20 D10 答案答案 解析 x 3 x 5 展开式的通项公式 Tr1Cr 53 rx53r 2 ,其各项次数依次为 5,7 2,2, 1 2,1, 5 2,所以 x 3 的系数是 2x1

    5、 的一次项系数 2 乘以 x 3 x 5 展开式的 x2的系数 由 x 3 x 5 展开式的通项公式 Tr1Cr 53 rx53r 2 知 53r 2 2,解得 r2,所以 x3的系数为 2C2 53 2180.故选 A. 解析解析 8(2020 山东烟台一模)已知函数 f(x)e xex exex,实数 m,n 满足不等式 f(2mn)f(2n)0,则下列不等关系成立的是( ) Amn1 Bmn1 Cmn1 Dmn1 解析 f(x)e xex exex(xR),f(x) exex exex,f(x)f(x),故 f(x)为 R 上的奇函数对 f(x)求导,得 f(x) 4 exex20,f(

    6、x)在 R 上 单调递增f(2mn)f(2n)0,f(2mn)f(2n)f(n2),2m nn2,即 mn1,故选 C. 答案答案 解析解析 二、选择题:本题共 4 小题,每小题 5 分,共 20 分在每小题给出的 选项中,有多项符合题目要求全部选对的得 5 分,有选错的得 0 分,部 分选对的得 3 分 9(2020 山东枣庄二调)2019 年 4 月 23 日,国家统计局统计了 2019 年 第一季度居民人均消费支出的情况,并绘制了饼状图(如图),则下列说法正 确的是( ) A第一季度居民人均每月消费支出约为 1633 元 B第一季度居民人均收入为 4900 元 C第一季度居民在食品烟酒项

    7、目的人均消费支出最多 D第一季度居民在居住项目的人均消费支出为 1029 元 解析 由饼状图可知第一季度衣着消费 441 元,占总体的 9%,所以总 支出为441 9% 4900 元, 那么居民人均每月消费支出为4900 3 1633 元, A 正确; 第一季度居民人均消费为 4900 元, 不是收入, B 错误; 食品烟酒项目占 31%, 最多,C 正确;第一季度居民在居住项目的人均消费支出为 490021% 1029 元,D 正确故选 ACD. 答案答案 解析解析 10(2020 山东新高考质量测评联盟高三 5 月联考)将函数 y2cosx1 图象上的各点的横坐标缩短到原来的1 2, 纵坐

    8、标不变, 再向左平移 12个单位, 得到函数 f(x)的图象,下列说法正确的是( ) A点 6,0 是函数 f(x)图象的对称中心 B函数 f(x)在 0,5 12 上单调递减 C函数 f(x)的图象与函数 g(x)2sin 2x2 3 1 的图象相同 D若 x1,x2是函数 f(x)的零点,则 x1x2是 的整数倍 答案答案 解析 将函数 y2cosx1 图象上的各点的横坐标缩短到原来的1 2,纵 坐标不变,可得到函数 y2cos2x1 的图象,再向左平移 12个单位,可得 到函数 f(x)2cos 2x 6 1 的图象令 x 6,求得 f(x)1,故 A 错误;若 x 0,5 12 , 则

    9、 2x 6 6, , 故 f(x)2cos 2x 6 1 在 0,5 12 上单调递减, 故 B 正确; 因为 f(x)2cos 2x 6 12cos 2x2 3 2 12sin 2x2 3 1 g(x),所以函数 f(x)的图象与函数 g(x)的图象相同,故 C 正确;令 f(x) 2cos 2x 6 10,则 cos 2x 6 1 2,所以 2x 62k 2 3 (kZ)或 2x 62k 4 3 (kZ),所以 xk 4(kZ)或 xk 7 12(kZ),不妨设 x1 7 12,x2 4,则 x1x2 3不是 的整数倍,故 D 错误故选 BC. 解析解析 11(2020 山东省实验中学高三

    10、 4 月高考预测)在棱长为 1 的正方体 ABCDA1B1C1D1中,点 M 在棱 CC1上,则下列结论正确的是( ) A直线 BM 与平面 ADD1A1平行 B平面 BMD1截正方体所得的截面为三角形 C异面直线 AD1与 A1C1所成的角为 3 D|MB|MD1|的最小值为 5 答案答案 解析 如图所示,易知平面 BCC1B1 平面 ADD1A1,又 BM平面 BCC1B1,故直 线 BM 与平面 ADD1A1平行,A 正确;平面 BMD1截正方体所得的截面为 BMD1N, 为四 边形,故 B 错误;连接 BC1,A1B,易知 AD1 BC1,故异面直线 AD1与 A1C1所成的角为A1C

    11、1B,又 A1BA1C1BC1, 故A1C1B 3,故 C 正确;延长 DC 到 B使 CB1,易知 BMBM, 故|MB|MD1|D1B 5, 当 M 为 CC1的中点时等号成立, 故 D 正确 故 选 ACD. 解析解析 12 (2020 山东济宁三模)已知直线 yx2 分别与函数 yex和 yln x 的图象交于点 A(x1,y1),B(x2,y2),则下列结论正确的是( ) Ax1x22 Bex1ex22e Cx1ln x2x2ln x1 e 2 答案答案 解析 函数 yex与 yln x 互为反函数,则函数 yex与 yln x 的图 象关于直线 yx 对称,将 yx2 与 yx 联

    12、立,得 x1,y1,由直线 yx2 分别与函数 yex和 yln x 的图象交于点 A(x1,y1),B(x2,y2), 作出函数图象如图,则 A(x1,y1),B(x2,y2)的中点坐标为(1,1),对于 A,由 x1x2 2 1, 解得 x1x22, 故 A 正确; 对于 B, ex1ex22 ex1 ex22ex1x2 2 e22e,因为 x1x2,即等号不成立,所以 ex1ex22e,故 B 正确; 解析解析 对于 C, 将 yx2 与 yex联立可得x2ex, 即 exx20, 设 f(x) exx2, 则函数为单调递增函数, 因为 f(0)10210,故函数 f(x)的零点在 0,

    13、1 2 上,即 0x11 2,由 x1x22,得 3 2x22,所以 x1ln x2x2ln x1x1ln x2x2ln 1 x1x1ln x2x2ln x2(x1x2)ln x20,g( e)2 e 1 2 3 2 e0,则 1x20,即 h(x)xln x 在(1, e)上单调递增,故 x1x2 x2ln x2 eln e e 2 ,故 D 错误故选 ABC. 解析解析 答案 x2 10 y2 5 1 三、填空题:本题共 4 小题,每小题 5 分,共 20 分 13(2020 山东德州二模)已知双曲线 C 过点(2 3,1),且与双曲线 x2 12 y 2 6 1 有相同的渐近线,则双曲线

    14、 C 的标准方程为_ 解析 由题意设所求双曲线方程为 x2 12 y2 6 k,因为双曲线过点(2 3, 1),所以12 12 1 6k,k 5 6,所以双曲线方程为 x2 12 y2 6 5 6,即 x2 10 y2 5 1. 答案答案 解析解析 答案 1 3 14黎曼函数是一个特殊的函数,由德国数学家黎曼发现提出,在高 等 数 学 中 有 着 广 泛 的 应 用 , 其 定 义 为 : R(x) 1 p,当x q p p,q为整数,q p为既约真分数 , 0,当x0,1或0,1上的无理数. 若f(x)是定义在R上且最小正 周期为 1 的函数,当 x0,1时,f(x)R(x),则 f 17

    15、3 f(lg 20)_. 解析 由函数 f(x)的最小正周期为 1 可得, f 17 3 f(lg 20)f 52 3 f(lg 21)f 2 3 f(lg 2)1 30 1 3. 答案答案 解析解析 答案 45 15(2020 山东滨州三模)已知 P,A,B,C 是球 O 的球面上的四个点, PA平面 ABC,PA2BC6,ABAC,则球 O 的表面积为_ 解析 由于 PA平面 ABC,所以 PAAB,PAAC, 而 ABAC,故可将三棱锥 PABC 补形为长方体,如图 所示,长方体的外接球,也即三棱锥 PABC 的外接球, 也即球 O.由于 PA2BC6,所以 BC3,设 ABa,AC b

    16、,则 a2b2BC29,所以长方体的对角线长为PA2AB2AC2 369 45.设球 O 的半径为 R,则 2R 45,所以球 O 的表面积为 4R2 45. 答案答案 解析解析 答案 5 17 16如图,正方形 ABCD 的边长为 2,顶点 A,B 分别在 y 轴的非负半 轴、 x 轴的非负半轴上移动, E 为 CD 的中点, 则OE OD 的最大值是_ 答案答案 解析 根据题意,设OBA,则 A(0,2sin),B(2cos,0) 0 15 16,k 的最小 值为 16. 12 分 若选:则 a1b42,3a132 2 d2(a12d),解得 d2. 6 分 下同. 12 分 解解 若选:

    17、则 a1b42,3(a12d)(a13d)8,解得 d4 3. 6 分 于是 Sn2nnn1 2 4 3 2 3n 24 3n, 8 分 1 Sn 3 2 1 nn2 3 4 1 n 1 n2 , 9 分 于 是Tk 3 4 11 3 1 2 1 4 1 k1 1 k1 1 k 1 k2 3 4 11 2 1 k1 1 k2 9 8 3 4 1 k1 1 k2 , 10 分 令 Tk15 16,得 1 k1 1 k2 1 4,整理得 k 25k100, 因为 k 为正整数,解得 k7, 所以 k 的最小值为 7. 12 分 解解 19(2020 新高考卷)(本小题满分 12 分)为加强环境保护

    18、,治理空气 污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中 的 PM2.5 和 SO2浓度(单位:g/m3),得下表: SO2 PM2.5 0,50 (50,150 (150,475 0,35 32 18 4 (35,75 6 8 12 (75,115 3 7 10 (1)估计事件“该市一天空气中 PM2.5 浓度不超过 75, 且 SO2浓度不超 过 150”的概率; (2)根据所给数据,完成下面的 22 列联表: SO2 PM2.5 0,150 (150,475 0,75 (75,115 (3)根据(2)中的列联表,判断是否有 99%的把握认为该市一天空气中 PM2

    19、.5 浓度与 SO2浓度有关? 附:K2 nadbc2 abcdacbd P(K2k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 解 (1)由表格可知,该市 100 天中,空气中的 PM2.5 浓度不超过 75, 且 SO2浓度不超过 150 的有 32618864 天, 所以该市一天空气中的 PM2.5 浓度不超过 75,且 SO2浓度不超过 150 的概率为 64 1000.64. 4 分 (2)由所给数据,可得 22 列联表为: SO2 PM2.5 0,150 (150,475 0,75 64 16 (75,115 10 10 8 分 解解 (3)

    20、根据 22 列联表中的数据可得 K2 nadbc2 abcdacbd 10064101610 2 80207426 3600 481 7.4846.635, 所以有 99%的把握认为该市一天空气中 PM2.5 浓度与 SO2浓度有关. 12 分 解解 20(2020 山东潍坊一模)(本小题满分 12 分)如图,在等腰直角三角形 ADP 中,A90 ,AD3,B,C 分别是 AP,DP 上的点,且 BCAD, E, F 分别是 AB, PC 的中点 现将PBC 沿 BC 折起, 得到四棱锥 PABCD, 连接 EF. (1)证明:EF平面 PAD; (2)是否存在点 B, 当将PBC 沿 BC

    21、折起到 PAAB 时, 二面角 PCD E 的余弦值等于 15 5 ?若存在,求出 AB 的长;若不存在,请说明理由 解 (1)证法一: 作 CMAB 交 AD 于点 M, 连接 PM, 取 PM 的中点 N, 连接 AN,FN,由三角形中位线定理,得 FNCM,且 FN1 2CM. 3 分 因为 E 是 AB 的中点,所以 AECM,且 AE1 2CM,故 FNAE,且 FNAE,所以四边形 AEFN 是平行四边形,所以 EFAN. 因为 AN平面 PAD,EF平面 PAD,所以 EF平面 PAD. 5 分 解解 证法二:取 CD 的中点 G,连接 EG,FG, 因为 E,F 分别是 AB,

    22、PC 的中点, 所以 FGPD,EGAD. 3 分 因为 FGEGG, 所以平面 EFG平面 PAD. 因为 EF平面 EFG, 所以 EF平面 PAD. 5 分 解解 (2)存在理由如下: 因为 BCAB,BCPB,且 ABPBB,所以 BC平面 PAB. 又因为 BCAD,所以 AD平面 PAB,所以 PAAD. 6 分 又因为 ABAD,PAAB, 以 A 为坐标原点,AB,AD,AP 所在直线分别为 x 轴、y 轴、z 轴建立 如图所示的空间直角坐标系,连接 DE,CE,设 ABa, 则 PBBC3a,由 PBAB 得 0a3 2,PA 96a, 解解 所以 A(0,0,0),C(a,

    23、3a,0),P(0,0,96a),D(0,3,0), 8 分 所以DC (a,a,0),DP (0,3,96a) 设平面 PCD 的法向量为 n(x,y,z),则 DC naxay0, DP n3yz96a0, 令 y1,则 n 1,1, 3 96a , 10 分 解解 又平面 CDE 的一个法向量 m(0,0,1), 依题意,有 15 5 |cosn,m| |n m| |n|m|, 所以 15 5 3 96a 2 3 32a ,解得 a1,即 AB 的长为 1. 故存在点 B,此时 AB 的长为 1. 12 分 解解 21(2020 山东滨州二模)(本小题满分 12 分)已知椭圆 C: x2

    24、 a2 y2 b2 1(ab0)经过点( 2,1),离心率为 2 2 . (1)求椭圆 C 的方程; (2)设直线 l:ykxt(t0)与椭圆 C 相交于 A,B 两点,若以 OA,OB 为邻边的平行四边形 OAPB 的顶点 P 在椭圆 C 上, 求证: 平行四边形 OAPB 的面积为定值 解 (1)因为椭圆 C 经过点( 2,1),代入椭圆方程, 可得 2 a2 1 b21, 2 分 又因为椭圆 C 的离心率为 2 2 ,所以c a 2 2 ,从而 a22b2, 4 分 联立,解得 a24,b22, 所以椭圆 C 的方程为x 2 4 y 2 2 1. 5 分 解解 (2)证明:把 ykxt

    25、代入椭圆方程x 2 4 y 2 2 1,得 (2k21)x24ktx2(t22)0, 6 分 当 (4kt)28(2k21)(t22)82(2k21)t20, 即 t20. 9 分 因为|AB|1k2|x1x2|1k2 解解 x1x224x1x22 2 1k222k21t2 2k21 2 3 1k2 2k21 .10 分 又点 O 到直线 l 的距离 d |t| 1k2, 11 分 所以平行四边形 OAPB 的面积 SOAPB2SOAB|AB| d 2 3|t| 2k21 6 2k21 2k21 6, 即平行四边形 OAPB 的面积为定值. 12 分 解解 22(2020 山西晋中四模)(本小

    26、题满分 12 分)已知函数 f(x)ln xx1. (1)求函数 f(x)的值域; (2)令 g(x)x fxx x2 在(2,)上的最小值为 m,求证:11 2 f(2m)0,f(x)单调递增; 当 x(1,)时,f(x)2), 于是 g(x)x2ln x4 x22 , 6 分 令 h(x)x2ln x4,则 h(x)12 x x2 x , 7 分 由于 x2,所以 h(x)0,即 h(x)在(2,)上单调递增; 又 h(8)0, 所以x0(8,9),使得 h(x0)0,即 2ln x0 x04, 当 x(2,x0)时,h(x)0, 即 g(x)在(2,x0)上单调递减;在(x0,)上单调递增 解解 所以 g(x)ming(x0)x 0 x0ln x0 x02 x2 02x0 2x02 x0 2 ,即 mx0 2 . 10 分 所以 f(2m)f(x0)ln x0 x01x 02 2 11 2 ,5 , 即11 2 f(2m)5. 12 分 解解 本课结束


    注意事项

    本文(高考数学复习之2021高考仿真模拟卷1)为本站会员(小****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开