欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2021年高三数学考点复习:空间几何体的表面积与体积

    • 资源ID:176670       资源大小:3.57MB        全文页数:57页
    • 资源格式: PPT        下载积分:370积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要370积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年高三数学考点复习:空间几何体的表面积与体积

    1、考点十三 空间几何体的表面积与体 积 1 A卷 PART ONE 解析 正方体的外接球半径等于正方体的体对角线长的一半,即外接 球半径 R 2 322 322 32 2 3,所以这个球的表面积为 S4R2 43236.故选 C. 一、选择题 1(2020 天津高考)若棱长为 2 3的正方体的顶点都在同一球面上,则 该球的表面积为( ) A12 B24 C36 D144 答案答案 解析解析 解析 因为该球与圆柱的上、下底面,母线均相切,不妨设圆柱的底 面半径为 r,故 2rO1O22,解得 r1.故该圆柱的表面积为 2r2 2rO1O2246.故选 C. 2.(2020 山东济南 6 月针对性训

    2、练)如图,在圆柱 O1O2内有 一个球 O, 该球与圆柱的上、 下底面及母线均相切 若 O1O22, 则圆柱 O1O2的表面积为( ) A4 B5 C6 D 答案答案 解析解析 3(2020 山东聊城三模)最早的测雨器记载见于南宋数学家秦九韶所著 的数书九章(1247 年)该书第二章为“天时类”,收录了有关降水量计 算的四个例子,分别是“天池测雨”“圆罂测雨”“峻积验雪”和“竹器 验雪” 其中“天池测雨”法是下雨时用一个圆台形的天池盆收集雨水 已 知天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸当 盆中积水深九寸(注:1 尺10 寸)时,平地降雨量是( ) A9 寸 B7 寸 C8

    3、 寸 D3 寸 答案答案 解析 由已知,得天池盆盆口的半径为 14 寸,盆底的半径为 6 寸,则 盆口的面积为 196 平方寸,盆底的面积为 36 平方寸又盆高 18 寸,积 水深 9 寸,则积水的水面半径为146 2 10(寸),积水的水面面积为 100 平 方寸,积水的体积为 V1 3(36 36100100)9588(立方寸), 所以平地降雨量为588立方寸 196平方寸3(寸) 解析解析 4(2020 山东德州高三 4 月模拟)已知三棱锥 SABC 的所有顶点都在 球 O 的球面上,SA平面 ABC,SA2,AB1,AC2,BAC 3,则 球 O 的体积为( ) A.16 2 3 B8

    4、 2 3 C4 2 D4 2 3 答案答案 解析 根据余弦定理,BC2AC2AB22AB AC cosBAC3,故 BC 3.根据正弦定理,2r BC sinBAC2,故 r1(r 为ABC 外接圆半径), 设 R 为三棱锥 SABC 外接球的半径,则 R2r2 SA 2 22,故 R 2,故 V4 3R 38 2 3 .故选 B. 解析解析 5如图,在棱长为 a 的正方体 ABCDA1B1C1D1 中,EF 是棱 AB 上的一条线段,且 EFba,若 Q 是 A1D1上的定点,P 在 C1D1上滑动,则四面体 PQEF 的体 积( ) A是变量且有最大值 B是变量且有最小值 C是变量无最大、

    5、最小值 D是常量 答案答案 解析 EF 是定长,Q 到 EF 的距离就是 Q 到 AB 的距离,也为定长, 即QEF 的底和高都是定值, QEF 的面积是定值, C1D1平面 QEF, P 在 C1D1上滑动,P 到平面 QEF 的距离是定值即三棱锥 PQEF 的高 也是定值, 于是体积固定 三棱锥 PQEF 的体积是定值, 即四面体 PQEF 的体积是定值 解析解析 6(2020 全国卷)已知 A,B,C 为球 O 的球面上的三个点,O1为 ABC 的外接圆,若O1的面积为 4,ABBCACOO1,则球 O 的表 面积为( ) A64 B48 C36 D32 答案答案 解析 设圆 O1的半径

    6、为 r,球的半径为 R,依题意,得 r24,r 2.由正弦定理可得 AB sin60 2r,AB2rsin60 2 3.OO1AB2 3. 根据球中圆截面的性质得 OO1平面 ABC,OO1O1A,ROA OO2 1O1A 2 OO2 1r 24,球 O 的表面积 S4R264.故选 A. 解析解析 7(多选)已知正方体的外接球与内切球上各有一个动点 M,N,若线段 MN 的最小值为 31,则( ) A正方体的外接球的表面积为 12 B正方体的内切球的体积为4 3 C正方体的棱长为 2 D线段 MN 的最大值为 2 3 答案答案 解析 设正方体的棱长为 a, 则正方体外接球的半径为体对角线长的

    7、一 半,即 3 2 a;内切球的半径为棱长的一半,即a 2.M,N 分别为外接球和内 切球上的动点,MNmin 3 2 aa 2 31 2 a 31,解得 a2,即正方体 的棱长为 2,C 正确;正方体的外接球的表面积为 4( 3)212,A 正 确; 正方体的内切球的体积为4 3 , B 正确; 线段 MN 的最大值为 3 2 aa 2 3 1,D 错误故选 ABC. 解析解析 8 (多选)若正三棱柱 ABCABC的所有棱长都为 3, 外接球的球 心为 O,则下列四个结论正确的是( ) A其外接球的表面积为 21 B直线 AB与直线 BC 所成的角为 3 CAOBC D三棱锥 OABC 的体

    8、积为9 3 8 答案答案 解析 如图,球心 O 到下底面的距离 OO3 2,AO 2 3 3 2 3 3 , 所 以 其 外 接 球 的 半 径R AO2OO2 21 2 ,所以其外接球的表面积为 4R2 21,A 正确;直线 AB与直线 BC 所成的角即直线 AB与直线 BC所 成的角,设其为 ,在ABC中,cos3 2 2323 22 23 23 2 4 ,故 B 错误;由 OO平面 ABC,得 OOBC,O为ABC 的重心,则 AO BC,故 BC平面 AOO,即 BCAO,故 AOBC,C 正确;根据 三棱锥的体积公式可得 VOABC1 3 3 2 1 23 3 3 2 9 3 8 ,

    9、D 正确 解析解析 答案 1 二、填空题 9(2020 浙江高考)已知圆锥展开图的侧面积为 2,且为半圆,则底面 半径为_ 解析 设圆锥底面半径为 r,母线长为 l,则 rl2, 2r1 22l, 解得 r1,l2. 答案答案 解析解析 答案 358.5 10学生到工厂劳动实践,利用 3D 打印技术制作模型,如图,该模型 为圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上, 四个顶点在圆锥底面上),圆锥底面直径为 10 2 cm,高为 10 cm,打印所 用原料密度为 0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为 _ g( 取 3.14) 答案答案 解析 设被挖

    10、去的正方体的棱长为 x cm,圆锥底面半径为 r cm,高为 h cm,则 2 2 x r hx h ,即 2 2 x 5 2 10 x 10 ,解得 x5,所以制作该模型所需材料 质量约为 mV0.9 1 3r 2 hx3 0.350100.9125358.5 g. 解析解析 答案 144 11 (2020 山东泰安二轮复习质量检测)已知 A, B 是球 O 的球面上两点, AOB90 , C 为该球面上的动点, 若三棱锥 OABC 体积的最大值为 36, 则球 O 的表面积为_ 解析 如图所示,当点 C 位于垂直于面 AOB 的直径的端 点时,三棱锥的体积最大,设球 O 的半径为 R,此时

    11、 VOABC VCAOB1 3 1 2R 2R1 6R 336,故 R6,则球 O 的表面积 为 S4R2144. 答案答案 解析解析 12.(2020 山东聊城一模)点 M,N 分别为三棱柱 ABCA1B1C1的棱 BC, BB1的中点,设A1MN 的面积为 S1,平面 A1MN 截三棱柱 ABCA1B1C1所 得截面的面积为 S, 五棱锥 A1CC1B1NM 的体积为 V1, 三棱柱 ABCA1B1C1 的体积为 V,则V1 V _,S1 S _. 7 12 3 5 解析 如图所示, 延长 NM 交直线 C1C 于点 P, 连接 PA1交 AC 于点 Q, 连接 QM.平面 A1MN 截三

    12、棱柱 ABCA1B1C1所得截面为四边形 A1NMQ. BB1CC1, M 为 BC 的中点, 则PCMNBM.点 M 为 PN 的中点 解析解析 A1MN 的面积 S11 2SA1NP, QCA1C1, PC PC1 1 3 PQ PA1, A1QM 的面积2 3SA1PM, S1 S 3 5. BMN 的面积1 8S 四边形 B1C1CB, 五棱锥 A1CC1B1NM 的体积为 V17 8V 四棱锥 A1B1C1CB, 而四棱 锥 A1B1C1CB 的体积2 3V, V1 V 7 8 2 3V V 7 12. 解析解析 三、解答题 13如图所示,三棱柱 ABCA1B1C1的侧棱垂直于底面,

    13、且底面是边 长为 2 的正三角形,AA13,点 D,E,F,G 分别是所在棱的中点 (1)证明:平面 BEF平面 DA1C1; (2)求三棱柱 ABCA1B1C1夹在平面 BEF 和平面 DA1C1之间部分的体 积 解 (1)证明:E,F 分别是 A1B1和 B1C1的中点, EFA1C1, EF平面 DA1C1,A1C1平面 DA1C1, EF平面 DA1C1, D,E 分别是 AB 和 A1B1的中点,DB 綊 A1E, 四边形 BDA1E 是平行四边形,BEA1D, BE平面 DA1C1,A1D平面 DA1C1, BE平面 DA1C1, BEEFE,平面 BEF平面 DA1C1. 解解

    14、(2)由题图可知,三棱柱 ABCA1B1C1夹在平面 BEF 和平面 DA1C1之间 的部分,可看作三棱台 DBGA1B1C1减掉三棱锥 BB1EF 后的剩余部分, SDBGSB1EF 3 4 12 3 4 ,SA1B1C1 3 4 22 3, 三棱台 DBGA1B1C1的体积为 V11 3 3 4 3 4 3 3 7 3 4 , 三棱锥 BB1EF 的体积 V21 3 3 4 3 3 4 , 三棱柱 ABCA1B1C1夹在平面 BEF 和平面 DA1C1之间部分的体积为 VV1V27 3 4 3 4 3 3 2 . 解解 14.如图,已知棱锥 SABCD 中,底面 ABCD 是边长为 2 的

    15、菱形, BAD60 ,SASD 5,SB 7,点 E 是棱 AD 的中点,点 F 在棱 SC 上,且 SF SC,SA平面 BEF. (1)求实数 的值; (2)求三棱锥 FEBC 的体积 解 (1)连接 AC,设 ACBEG,则平面 SAC平面 EFBFG, SA平面 EFB,SAFG, GEAGBC, AG GC AE BC 1 2, SF FC AG GC 1 2.SF 1 3SC, 1 3. 解解 (2)SASD 5,SEAD,SE2, 又 ABAD2,BAD60 ,BE 3, SE2BE2SB2.SEBE,SE平面 ABCD, VFEBC2 3VSEBC 1 3VSABCD 1 3

    16、1 322sin60 2 4 3 9 . 解解 2 B卷 PART TWO 一、选择题 1.(2020 山东临沂一模)九章算术是我国古 代内容极为丰富的数学名著,书中商功有如下 问题:“今有委粟平地,下周一十二丈,高一丈, 问积及为粟几何?”意思是“有粟若干,堆积在平地上,它底圆周长为 12 丈,高为 1 丈,问它的体积和粟各为多少?”如图,主人意欲卖掉该堆粟, 已知圆周率约为 3,一斛粟的体积约为 2700 立方寸(单位换算:1 立方丈 106立方寸),一斛粟米卖 270 钱,一两银子 1000 钱,则主人卖后可得银子 ( ) A200 两 B240 两 C360 两 D400 两 答案答案

    17、 解析 该堆粟的底面半径为 r 12 232,体积 V 1 332 214 立 方丈4106立方寸40000 27 斛,故主人卖后可得银子40000 27 270 1000 400 两故选 D. 解析解析 2(2020 海口市高考模拟演练)一个底面边长为 3 的正三棱锥的体积与 表面积为 24 的正方体的体积相等,则该正三棱锥的高为( ) A12 3 B32 3 3 C32 3 9 D12 解析 因为正方体的表面积为 24,所以其棱长为 2,体积为 238.设正 三棱锥的高为 h,因为正三棱锥的体积与正方体的体积相等,所以 1 3 1 2 33 3 2 h8,解得 h32 3 9 . 答案答案

    18、 解析解析 3.(2020 海南中学高三摸底)已知一个凸多面体共有 9 个面, 所有棱长均 为 1,其平面展开图如图所示,则该凸多面体的体积 V( ) A1 2 6 B1 C 2 6 D1 2 2 答案答案 解析 根据平面展开图,还原几何体如右图所示,故该几何体是由棱 长为 1 的正方体和底边棱长为 1 的正四棱锥组合而成则其体积 V131 3 11 2 2 1 2 6 .故选 A. 解析解析 4(2020 海南高考调研测试)张衡是中国东汉时期伟大的天文学家、数 学家,他曾经得出圆周率的平方除以十六等于八分之五已知三棱锥 A BCD 的每个顶点都在球 O 的球面上,AB底面 BCD,BCCD,

    19、且 AB CD 3,BC2,利用张衡的结论可得球 O 的表面积为( ) A30 B10 10 C33 D12 10 答案答案 解析 因为 BCCD,所以 BD 7,又 AB底面 BCD,所以球 O 的 球心为侧棱 AD 的中点, 从而球 O 的直径为 10.利用张衡的结论可得 2 16 5 8, 则 10,所以球 O 的表面积为 4 10 2 21010 10.故选 B. 解析解析 5(2020 山东青岛三模)在三棱柱 ABCA1B1C1中,ABBCAC,侧 棱 AA1底面 ABC,若该三棱柱的所有顶点都在同一个球 O 的表面上,且 球 O 的表面积的最小值为 4,则该三棱柱的侧面积为( )

    20、A6 3 B3 3 C3 2 D3 答案答案 解析 如图,设三棱柱上、下底面中心分别为 O1, O2,则 O1O2的中点为 O,设球 O 的半径为 R,则 OA R,设 ABBCACa,AA1h,则 OO21 2h,O2A 2 3 3 2 AB 3 3 a, 则在RtOO2A中, R2OA2OO2 2O2A 2 1 4h 21 3a 221 2h 3 3 a 3 3 ah,当且仅当 h2 3 3 a 时,等号成立,所以 S 球4R 24 3 3 ah,所以4 3 3 ah4,所以 ah 3,所以该三棱柱的 侧面积为 3ah3 3.故选 B. 解析解析 6(2020 山东安丘模拟)唐朝的狩猎景象

    21、浮雕银杯如图 1 所示,其浮雕 临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺. 它的盛酒部分可 以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度), 如图 2 所示, 已知球的半径为 R, 酒杯内壁表面积为14 3 R2.设酒杯上部分(圆 柱)的体积为 V1,下部分(半球)的体积为 V2,则V1 V2( ) A2 B3 2 C1 D 3 4 答案答案 解析 由球的半径为 R, 得半球表面积为 2R2, 又酒杯内壁表面积为14 3 R2,圆柱的侧面积为8 3R 2.设圆柱的高为 h,则 2R h8 3R 2,即 h4 3R. V1R2 4 3R 4 3R 3,V 22 3R

    22、 3.V1 V2 4 3R 3 2 3R 32.故选 A. 解析解析 7(多选)沙漏是古代的一种计时装置,它由两个形状完全相同的容器 和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连 接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时如图,某 沙漏由上、下两个圆锥组成,圆锥的底面直径和高均为 8 cm,细沙全部在 上部时,其高度为圆锥高度的2 3(细管长度忽略不计)假设该沙漏每秒钟漏 下 0.02 cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的 圆锥形沙堆,则以下结论正确的是(3.14)( ) A沙漏中细沙的体积为1024 81 cm3 B沙漏的体积是 128

    23、 cm3 C细沙全部漏入下部后此锥形沙堆的高度约为 2.4 cm D该沙漏的一个沙时大约是 1985 秒 答案答案 解析 对于 A,根据圆锥的截面图可知,细沙在上部时,细沙的底面半 径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面 半径 r2 34 8 3 cm,所以沙漏中细沙的体积 V 沙1 3r 2 2h 3 1 3 64 9 16 3 1024 81 cm3,A 正确;对于 B,沙漏的体积 V 漏21 3 h 2 2h21 3 428256 3 cm3,B 错误;对于 C,设细沙全部漏入下部后的高度为 h1,根据细沙体积不变可知,1024 81 1 3 h 2 2h 1,

    24、所以1024 81 16 3 h1, 解析解析 所以 h12.4 cm,C 正确;对于 D,因为细沙的体积为1024 81 cm3,沙漏每 秒钟漏下 0.02 cm3的沙, 所以一个沙时为 1024 81 0.02 10243.14 81 501985 秒, D 正确故选 ACD. 解析解析 8.(多选)(2020 山东青岛一模)已知四棱台 ABCD A1B1C1D1的上、下底面均为正方形,其中 AB2 2,A1B1 2,AA1BB1CC12,则下述正确的是( ) A该四棱台的高为 3 BAA1CC1 C该四棱台的表面积为 26 D该四棱台外接球的表面积为 16 答案答案 解析 由题意可得该四

    25、棱台为正四棱台由棱台的性 质,画出切割前的四棱锥,如图,由 AB2 2,A1B1 2 可知SA1B1与SAB 的相似比为 12,所以 SA2AA1 4,AO2,所以 SO2 3,所以 OO1 3,故该四棱台 的高为 3,A 正确;因为 SASCAC4,所以 AA1与 CC1的夹角为 60 ,不垂直,B 错误;该四棱台的表面积为 SS 上底S下底 S 侧284 22 2 2 14 2 106 7,C 错误;易知该四棱台外接 球的球心在 OO1上,在平面 B1BOO1中,由于 OO1 3,B1O11,则 OB1 2OB,即点 O 到点 B 与点 B1的距离相等,则该四棱台外接球的半径 r OB2,

    26、该四棱台外接球的表面积为 16,D 正确,故选 AD. 解析解析 答案 4 二、填空题 9已知圆柱的底面半径为 1,母线长为 2,则该圆柱的侧面积等于 _ 解析 圆柱的底面半径为 r1, 母线长为 l2, 其侧面积为 S2rl 2124. 答案答案 解析解析 解析 正六棱柱体积为 6 3 4 22212 3 cm3,挖去的圆柱体积为 1 2 22 2 cm 3,故此六角螺帽毛坯的体积为 12 3 2 cm3. 10.(2020 江苏高考)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆 柱所构成的已知螺帽的底面正六边形边长为 2 cm,高为 2 cm,内孔半径 为 0.5 cm,则此六角螺帽毛坯的

    27、体积是_cm3. 答案 12 3 2 答案答案 解析解析 11(2020 江苏南京金陵中学、南通海安高级中学、南京外国语学校第 四次模拟)设棱长为 a 的正方体的体积和表面积分别为 V1,S1,底面半径和 高均为 r 的圆锥的体积和侧面积分别为 V2,S2,若 V1 V2 3 ,则 S1 S2的值为 _ 答案 3 2 答案答案 解析 不妨设 V127,V29,故 V1a327,所以 a3,所以 S1 6a254.如图所示,因为 V21 3hr 21 3r 39,所以 r3,又 l 2r,所 以 S21 2l2r 2r 29 2,所以S1 S2 54 9 2 3 2 . 解析解析 12 (202

    28、0 山东潍坊高密二模)在四棱锥 PABCD 中, PA平面 ABCD, AP2,点 M 是矩形 ABCD 内(含边界)的动点,且 AB1,AD3,直线 PM 与平面 ABCD 所成的角为 4.记点 M 的轨迹长度为 , 则 tan_; 当三棱锥 PABM 的体积最小时,三棱锥 PABM 的外接球的表面积为 _ 3 8 解析 如图,因为 PA平面 ABCD,垂足为 A, 则PMA 为直线 PM 与平面 ABCD 所成的角,所以 PMA 4.因为 AP2,所以 AM2,所以点 M 位 于底面矩形 ABCD 内的以点 A 为圆心, 2 为半径的圆 上,记点 M 的轨迹为圆弧.连接 AF,则 AF2.

    29、因 为 AB1,AD3,所以AFBFAE 6,则 的长度 62 3,所 以 tan 3.当点 M 位于点 F 时,三棱锥 PABM 的体积最小,又PAF PBF 2,所以三棱锥 PABM 的外接球的球心为 PF 的中点因为 PF 22222 2,所以三棱锥 PABM 的外接球的表面积 S4( 2)28. 解析解析 三、解答题 13如图 1,在菱形 ABCD 中,AB2,DAB60 ,M 是 AD 的中点, 以 BM 为折痕,将ABM 折起,使点 A 到达点 A1的位置,且平面 A1BM 平面 BCDM,如图 2. (1)求证:A1MBD; (2)若 K 为 A1C 的中点,求四面体 MA1BK

    30、 的体积 解 (1)证明:在图 1 中,连接 BD(如图 a), 四边形 ABCD 是菱形,DAB60 ,M 是 AD 的中点, ADBM,故在图 2 中,BMA1M, 平面 A1BM平面 BCDM,平面 A1BM平面 BCDMBM,A1M 平面 BCDM, 又 BD平面 BCDM,A1MBD. (2)在图 1 中,四边形 ABCD 是菱形,ADBM,ADBC, BMBC,且 BM 3,在图 2 中,连接 CM(如图 b), 解解 则 VA1BCM1 3SBCM A1M 1 3 1 22 31 3 3 , K 为 A1C 的中点,VMA1BKVKMA1B1 2VCMA1B 1 2VA1 BCM 3 6 . 四面体 MA1BK 的体积为 3 6 . 解解 本课结束


    注意事项

    本文(2021年高三数学考点复习:空间几何体的表面积与体积)为本站会员(小****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开