1、2021 年年中考中考二轮复习图形性质综合型填空压轴题专题突破训练二轮复习图形性质综合型填空压轴题专题突破训练 1如图所示,在 ABC 中,ABAC10 5,BD、CE 为 ABC 的两条中线,且 BDCE 于点 N,M 为线段 BD 上的动点,则 AM+EM 的最小值为_ 2如图所示,在正方形ABCD中,点E为边CD上一点,2CEDE,AE交对角线BD于点G,过点 G作FGAE交BC于F,连接EFAF、,AF交对角线BD于点H, 5 2 2 HG ,将FGH沿GF 翻折得到FGH,连接 EH ,则 EFH的周长为_ 3如图,在ABC中,90ACB,1ACBC,E,F,为线段AB上两动点,且
2、45ECF, 过点E,F分别作BC,AC的垂线相交于点M,垂足分别为H,G现有以下结论: 2AB , 当点E与点B重合时, 1 2 MH ,AFBEEF, 1 2 MG MH,其中正确结论为 _ 4如图,在矩形 ABCD 中,点 E、F 分别在边 AD、AB 上, CEF 为等腰直角三角形,CEEF,CEF90, BAD 的平分线交 CF 于点 H,连接 BH若 BH10,AF 2,则 ABH 的面积为_ 5 如图, 在Rt ABC,90ACB,6AB, 直线AB经过原点O,AC交x轴于点D, :3:2CD AD, 若反比例函数 k y x 经过A,B两点,则k的值为_ 6如图,C 是线段AB
3、上一动点,ACD,CBE都是等边三角形,M,N 分别是CD,BE的中点,若 6AB,则线段MN的最小值为_ 7如图,在 ABC 中,ACB90,点 D 为 AB 的中点,AC3, 1 cos 3 CAB,将 DAC 沿着 CD 折叠 后,点 A 落在点 E 处,则 BE 的长为_ 8 如图, 在平面直角坐标系xOy中,4,3P,O经过点P 点A, 点B在y轴上,PAPB, 延长PA, PB分别交O于点C,点D,设直线CD与x轴正方向所夹的锐角为 (1)O的半径为_; (2)tan_ 9如图,在等腰直角ABC中,8,90ABACA ,点 E 是BC边上一点,点 D 是AC边上的中 点, 连接ED
4、, 过点 E 作EFED, 满足EDEF, 连接DF, 交BC于点 M, 将D E M沿DE翻折 得 到DEN,连接NF,交DE于点 P,若2 2BE ,则NEP的周长是_ 10如图,四边形ABCD中,90ABCADC ,BD平分ABC,60DCB,4ABBC , 则AC的长是_ 11如图,在正方形ABCD中,点 E 是边BC的中点,连接AE、DE,分别交BD、AC于点 P、Q,过 点 P 作PFAE交CB的延长线于 F,下列结论: 90AEDEACEDB , APFP, 10 2 AEAO, 若四边形OPEQ的面积为 4, 则该正方形ABCD的面积为 36,CE EFEQ DE 其中正确的结
5、论有_ 12 如图, 在ABC中,ABAC, 点D为ABC内部一点, 且240 ,2ADBBACADCABC , 若32BDCD,则tanADC的值为_ 13 在ABC中,AD BC于点D, 3 26AC ,60ABC,45C, 现将ABD沿着AD 翻折,得到ADE,过D作DFAC于点F,交AE于点H,连BH,则 2 BH 的值是_ 14如图,四边形ABCD中, / /,ABCD CEAB10,8AEBCCE ,6CDBE,点F为直 线CE左侧平面上一点,CFE的面积为8,则FAFC的最大值为_ 15如图,ABC中,A60,ABAC,两内角的平分线 CD、BE 交于点 O,OF平分 BOC交
6、BC 于 F, (1)BOC 120; (2)连 AO,则 AO 平分BAC ; (3)A、O、F 三点在同一直线上; (4)OD=OE; (5)BD+CE=BC 其中正确的结论是_ (填序号) 16如图,在 Rt ABC 中,ACB90,AC4,BC6,点 D 是边 BC 的中点,点 E 是边 AB 上的任意一点 (点 E 不与点 B 重合) , 沿 DE 翻折 DBE, 使点 B 落在点 F 处, 连接 AF, 则当线段 AF 的长取最小值时, sinFBD 是_ 17如图,已知正方形ABCD中,BE平分DBC且交CD边于点E,将BCE绕点C顺时针旋转到 DCF的位置,并延长BE交DF于点
7、G,若 2 FG BGDG ,且4BG EG ,则GE的长为_ 18如图,已知反比例函数 y 1 x 的图象与直线 ykx(k0)相交于点 A、B,以 AB 为底作等腰三角形, 使ACB120,且点 C 的位置随着 k 的不同取值而发生变化,但点 C 始终在某一函数图象上,则这个图象 所对应的函数解析式为_ 19如图,在一张直角三角形纸片ABC中,90ACB,5BC ,5 3AC ,P是边AB上的一动 点,将ACP沿着CP折叠至 1 ACP,当 1 ACP与ABC的重叠部分为等腰三角形时,则 1 ACA的 度数为_ 20如图,在矩形ABCD中,13AD,24AB ,点E是边AB上的一个动点,将
8、CBE沿CE折叠, 得到CBE连接 AB 、DB,若 ADB 为等腰三角形,则BE的长为_ 21正方形 1 1 12 ABC A, 2223 A B C A, 3334 A B C A,按如图所示的方式放置,点 123 AAA, ,和点 123 BBB, ,分别在直线1yx和x轴上,则点 2020 C的纵坐标是_ 22如图,正方形ABCD中,9AB ,点E为AD上一点,且:1:2AE ED,点P为边AB上一动点, 连接PE,过点E作EFPE,交射线BC于点F,连接PF,点M为PF中点,连接DM,则DM的 最小值为_ 23如图,边长为 2 的正方形 ABCD 中,点E是其内部一点,且满足DAE+
9、CBE=135,点 F 为边 BC 上一 点,点 M 是 CD 边的中点,连接 EF、FM,则 EF+FM 的最小值为_ 24四边形ABCD、四边形AEFG都是正方形,当正方形AEFG绕点A逆时针旋转 45( 45BAE) 时, 如图, 连接DG,BE, 并延长BE交DG于点H, 且B HD G 若4AB , 2AE , 则线段BH 的长是_ 25如图,在平行四边形 ABCD 中,对角线 AC,BD 交于点 O,且ACB=45,AEBD,垂足为 F,交 BC 于 点 E若 AB=AE,AO=2,则 BE 的长为_ 26如图,矩形ABCD中,8AB,4AD,E为边AD上一个动点,连结BE,取BE
10、的中 点G,点 G绕点E逆时针旋转90得到点F,连结CF,则CEF面积的最小值是_. 27如图,等腰直角ABC中,90C,点D是AB的中点,点E是BC边上的一点,过C,D,E 三点的圆与AC交于点F,若BED与ECF的面积之比为2:3,2DE ,则CE的长为_ 28如图,,4,60ABCD ABB ,点 G 为边 BC 上一点,且2 3BG ,点 E 为 AB 上一动点,将B 沿GE折叠,当点 B 的对应点 F 落在平行四边形的边上时,线段BE的长为_ 参考答案参考答案 15 13 25510 3 46 52 5 6 3 3 2 77 85 4 3 95 210 10 4 6 3 11 124 3 1316+4 3 1410 15 16 5 5 172 2 2 18y 1 3x 1980或 140 2013 3 3 、 26 3 、 39 2 21 2019 2 22 21 10 10 23132 24 8 10 5 252 2 2615 27 6 5 5 283