1、 专题专题 03 分式的运算分式的运算 一、分式的概念一、分式的概念 1.分式:形如 ,A、B 是整式,B 中含有未知数且 B 不等于 0 的整式叫做分式(fraction)。其中 A 叫做分式 的分子,B 叫做分式的分母。分式有意义的条件是分母不等于 0 2.约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分。 3.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。 4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最 简分
2、式. 二、分式运算法则二、分式运算法则 1.分式的四则运算: (1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用 (2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法 法则进行计算. 2.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 8.分式的 除法法则: (1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (2)除以一个分式,等于乘以这个分式的倒数. 【例题【例题 1 1】(2020(2020安顺安顺) )当x1 时,下列分式没有意义的是( ) A+1 B 1 C1 D
3、 +1 【答案】B 【解析】A.+1 ,当x1 时,分式有意义不合题意; B. 1,当 x1 时,x10,分式无意义符合题意; C.1 ,当x1 时,分式有意义不合题意; D. +1,当 x1 时,分式有意义不合题意; 【点拨】直接利用分式有意义的条件分析得出答案 【对点练习】【对点练习】(2019(2019 江苏常州江苏常州) )若代数式 1 3 x x 有意义,则实数x的取值范围是( ) Ax1 Bx3 Cx1 Dx3 【答案】D 【解析】 本题考查分式有意义的条件, 只要分母不为 0, 分式就有意义, 由x30 得x3, 因此本题选 D 【点拨】分式的分母不能等于 0,是求分式有意义的关
4、键。 【例题【例题 2 2】(2020(2020金华金华) )分式+5 2的值是零,则 x的值为( ) A2 B5 C2 D5 【答案】D 【解析】由题意得:x+50,且x20, 解得:x5, 【点拨】利用分式值为零的条件可得x+50,且x20,再解即可 【对点练习】【对点练习】(2019(2019宿迁宿迁) )关于x的分式方程+1 的解为正数,则a的取值范围是 【答案】a5 且a3 【解析】去分母得:1a+2x2, 解得:x5a, 5a0, 解得:a5, 当x5a2 时,a3 不合题意, 故a5 且a3 【点拨】找出分母等于 0 时的 a 的值,把这个值去掉得出的 a 的取值范围就是正确的结
5、论。 【例题【例题 3 3】(2020(2020济宁济宁) )已如m+n3,则分式+ ( 22 2n)的值是 【答案】1 3 【解析】原式= + (2+2+2) = + (+)2 = 1 +, 当m+n3 时, 原式= 1 3 【点拨】根据分式运算法则即可求出答案 【对点练习】【对点练习】(2019(2019 湖南株洲湖南株洲) )先化简,再求值:,其中a 【答案】4 【解析】 , 当a时,原式4 【点拨】注意先正确化简,再代数据求值。 一、选择题一、选择题 1.(20191.(2019 广西省贵港市广西省贵港市) )若分式 2 1 1 x x 的值等于 0,则x的值为( ) A1 B0 C1
6、 D1 【答案】D 【解析】分式的值为零的条件。 2 1(1)(1) 10 11 xxx x xx ,1x;故选:D 2.(20192.(2019 北京市北京市) )如果1mn,那么代数式 22 2 21mn mn mmnm 的值为 A3 B1 C1 D3 【答案】D 【解析】 22 2 21mn mn mmnm = 2mnmn mnmn m mnm mn = = 2mm mnmn m mn = 3 mn 又1mn 原式=3 13 .故选 D. 3 3(2019(2019孝感孝感) )已知二元一次方程组,则的值是( ) A5 B5 C6 D6 【答案】C 【解析】 , 2 得,2y7,解得,
7、把代入得,+y1,解得, 二、填空题二、填空题 4(2020(2020聊城聊城) )计算:(1+ 1) 1 2 = 【答案】a 【解析】原式= 1+ 1 a(a1) = 1 1a(a1) a 【点拨】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案 5(2020(2020南充南充) )若x 2+3x1,则 x 1 +1 = 【答案】2 【解析】x 1 +1 = (+1)1 +1 = 2+1 +1 , x 2+3x1, x 213x, 原式= 13+1 +1 = 22 +1 = 2(+1) +1 = 2, 【点拨】根据分式的减法可以将所求式子化简,然后根据x 2+3x1,可以得到 x
8、 213x,代入化简后 的式子即可解答本题 6.(20196.(2019武汉武汉) )计算的结果是 【答案】 【解析】原式 7. (20197. (2019 黑龙江绥化黑龙江绥化) )当 a2018 时,代数式 2 11 11 1 aa aa a 的值是_. 【答案】2019 【解析】 2 2 1111 =12019 1111 1 aaaa a aaaa a 8.(20198.(2019 吉林省吉林省) )计算 y x x 2 2 y = 【答案】 1 2x 【解析】单项式乘以单项式,分子分母分别相乘,能约分的要约分 9.9.(2019(2019 广西梧州广西梧州) )化简: 2 28 2 a
9、 a a 【答案】4a 【解析】原式 2 2(4)2(2)(2) 22 aaa aa aa 24aa4a 故答案为:4a 1010(2019(2019 湖南郴州湖南郴州) )若,则 【答案】 1 2 【解析】, 2x+2y3x, 故 2yx, 则 三、解答题三、解答题 11(2020(2020连云港连云港) )化简+3 1 2+3 22+1 【答案】见解析。 【分析】直接利用分式的性质进而化简进而得出答案 【解析】原式= +3 1 (1)2 (+3) = +3 1 (1)2 (+3) = 1 12(2020(2020泸州泸州) )化简:(+2 +1) 21 【答案】见解析。 【解析】根据分式的
10、混合运算顺序和运算法则进行计算 原式= 2+2 (+1)(1) = 2(+1) (+1)(1) = 2 1 13(2020(2020德州德州) )先化简:(1 2 +2 ) 4 24+4,然后选择一个合适的 x值代入求值 【答案】见解析。 【解析】(1 2 +2 ) 4 24+4 = (1) (2) (2)(+2) (2) (2)2 4 = 4 (2) (2)2 4 = 2 , 把x1 代入2 = 12 = 1 14.(201914.(2019 广东深圳广东深圳) )先化简:(1 3 2x+ ) 2 44 x xx 1 + ,再将 x=1 代入求值 【答案】见解析。 【解析】先把括号内的分式进
11、行通分相减,再把除法化为乘法进行约分化简,最后代入求值 原式= 2 x x 1 + () 2 2x x1 + =x+2 当 x=1 时,原式=1+2=1 15.(201915.(2019 贵州遵义贵州遵义) )化简式子 aa a aa aa 2 2 2 2 1 ) 1 44 2 (,并在-2,-1,0,1,2 中选取一个合适的数作为 a 的 值代入求值. 【答案】见解析。 【解析】将分式化简为最简分式,再选择不能是分母为 0 的数作为 a 的值代入即可. 原式= 2 2)(1)(1) 1) -2(1) a aaa aa a ( ( () = 21 ) -2 aaa aa (= 2(1)2 -2
12、12 aaa aaa a-1,0,1,2,a=-2, 当 a=-2 时,原式=1 16.16.(2019(2019 湖南张家界湖南张家界) )先化简,再求值: 2 12 ) 1 2 32 ( 2 x xx x x ,然后从 0,1,2 三个数中选择一个恰当的数代入求值 【答案】见解析。 【解析】先化简,按分式的运算法则及顺序进行化简;再在给出的三个数中选择使代数式有意义的x的值 代入化简后的结果中求值 原式 2 23(2)(1) 22 xxx xx 2 12 2 (1) xx xx 1 1x x1,2, 当x0 时,原式1 17.17.(2019(2019 黑龙江哈尔滨黑龙江哈尔滨) )先化简
13、再求值: 2 4 ) 44 4 2 2 ( 2 x x xx x x x ,其中 x=4tan45+2cos30 【答案】见解析。 【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x的值,代入计 算可得 原式 2 2 x x 2 (2) (2) x x x 4 2 x x ( 2 2 x x 2 x x ) 2 4 x x 2 x x 2 4 x x 4 x x 当x4tan45+2cos3041+2 3 2 4+3时, 原式 43 434 43 3 4 33 3 18.18.(2019(2019 湖北十堰湖北十堰) )先化简,再求值:(1 1 )( 2+1 2)
14、,其中a= 3 +1 【答案】见解析。 【解析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题 (1 1 )( 2+1 2) = 1 2+12 = 1 (1)2 = 1 1 当a= 3 +1 时,原式= 1 3+11 = 3 3 1919(2019(2019 湖南郴州湖南郴州) )先化简,再求值:,其中a 【答案】1 【解析】 , 当a时,原式1 2020(2019(2019 湖南常德湖南常德) )先化简,再选一个合适的数代入求值: ()(1) 【答案】 1 9 【解析】()(1) 当x2 时,原式 2121(2019(2019湖南娄底湖南娄底) )先化简
15、2 2 4 9 x x (1 1 3x ),再从不等式 2x37 的正整数解中选一个使原式有意 义的数代入求值 【答案】 1 4 【解析】原式= (2)(2) (3)(3) xx xx 3 1 3 x x = (2)(2)3 (3)(3)4 xxx xxx = (2)(2) (3)(4) xx xx , 不等式 2x37, 解得:x5, 其正整数解为 1,2,3,4, 当 x=1 时,原式= 1 4 2222(2019(2019湖南张家界湖南张家界) )先化简,再求值:(1),然后从0,1,2三 个数中选择一个恰当的数代入求值 【答案】-1 【解析】原式() , 当x0 时,原式1 23.(201923.(2019 辽宁本溪辽宁本溪) ) 先化简,再求值: 2 22 412 4422 a aaaaa .其中a满足a 2+3a-2=0. 【答案】1 【解析】本题考查分式的化简求值,根据分式的减法和除法可以化简题目中的式子,然后根据a 2+3a-2=0, 可以求得所求式子的值 2 22 412 4422 a aaaaa = 2 2221 22 2 aaa a a a 21 22 a aa 2 2 a a 3 2 a a 2 2 a a 3 2 a a 2 3 2 aa a 2+3a20, a 2+3a2, 原式 2 2 1