1、29.2 三视图,第二十九章 投影与视图,导入新课,讲授新课,当堂练习,课堂小结,第1课时 三视图,1. 会从投影的角度理解视图的概念,明确视图与投影的关系. 2. 能识别物体的三视图,会画简单几何体的三视图. (重点、难点),学习目标,导入新课,情境引入,“横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中”你能说明是什么原因吗?,讲授新课,观察与思考,下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?,当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个视图视图也可以看作物体在某一个方向的光线下的正投影,对于同一物体,如果从不同方向观察,所得到的视图可能
2、不同本章中我们只讨论三视图.,正面,侧面,水平面,1. 三个投影面 我们用三个互相垂直的平面(例如:墙角处的三面墙面)作为投影面,其中正对着我们的叫正面,正面下方的叫水平面,右边的叫做侧面.,主视图,主视图,俯视图,左视图,正面,2. 三视图,侧面,水平面,俯视图,左视图,将三个投影面展开在一个平面内,得到这个物体的一张三视图.,三视图是主视图、俯视图、左视图的统称.它是从三个方向分别表示物体形状的一种常用视图.,例1 画出图中基本几何体的三视图:,典例精析,主视图,左视图,解:如图所示:,俯视图,主视图,左视图,俯视图,3. 在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等;,1
3、. 确定主视图的位置,画出主视图;,2. 在主视图正下方画出俯视图,注意与主视图长对正;,三视图的具体画法为:,注意:不可见的轮廓线,用虚线画出.,归纳:,4. 为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线表示对称轴.,例2 画出如图所示的支架的三视图,其中支架的两个台阶的高度和宽度相等,解:下图是支架的三视图,画出图中的几何体的三视图.,练一练,例3 画出图中简单组合体的三视图:,主视图,左视图,俯视图,解:三视图如下:,A,B,C,A,A,B,找出对应的的三视图.,练一练,当堂练习,1下图的几何体中,主视图、左视图、俯视图均相同的是 ( )2一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是 ( )A球 B三棱锥 C正方体 D圆柱,D,D,A B C D,3将矩形硬纸板绕它的一条边旋转180所形成的 几何体的主视图和俯视图不可能是 ( )A矩形,矩形 B半圆、矩形C圆、矩形 D矩形、半圆,C,4如图摆放的几何体的俯视图是 ( ),B,A B C D,5下图中表示的是组合在一起的模块,那么这个模块的俯视图的是 ( ),A B C D,A, ,主视图,左视图,俯视图,6. 画出下列几何体的三视图.,三视图,三视图的概念及关系,课堂小结,三视图的画法,简单几何体的三视图,